基于初始阶段的半监督集成学习缺失标签插补

Hufsa Khan, Han Liu, Chao Liu
{"title":"基于初始阶段的半监督集成学习缺失标签插补","authors":"Hufsa Khan,&nbsp;Han Liu,&nbsp;Chao Liu","doi":"10.1007/s43674-021-00015-7","DOIUrl":null,"url":null,"abstract":"<div><p>In classification tasks, unlabeled data bring the uncertainty in the learning process, which may result in the degradation of the performance. In this paper, we propose a novel semi-supervised inception neural network ensemble-based architecture to achieve missing label imputation. The main idea of the proposed architecture is to use smaller ensembles within a larger ensemble to involve diverse ways of missing label imputation and internal transformation of feature representation, towards enhancing the prediction accuracy. Following the process of imputing the missing labels of unlabeled data, the human-labeled data and the data with imputed labels are used together as a training set for the credible classifiers learning. Meanwhile, we discuss how this proposed approach is more effective as compared to the traditional ensemble learning approaches. Our proposed approach is evaluated on different well-known benchmark data sets, and the experimental results show the effectiveness of the proposed method. In addition, the approach is validated by statistical analysis using Wilcoxon signed rank test and the results indicate statistical significance of the performance improvement in comparison with other methods.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-021-00015-7.pdf","citationCount":"3","resultStr":"{\"title\":\"Missing label imputation through inception-based semi-supervised ensemble learning\",\"authors\":\"Hufsa Khan,&nbsp;Han Liu,&nbsp;Chao Liu\",\"doi\":\"10.1007/s43674-021-00015-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In classification tasks, unlabeled data bring the uncertainty in the learning process, which may result in the degradation of the performance. In this paper, we propose a novel semi-supervised inception neural network ensemble-based architecture to achieve missing label imputation. The main idea of the proposed architecture is to use smaller ensembles within a larger ensemble to involve diverse ways of missing label imputation and internal transformation of feature representation, towards enhancing the prediction accuracy. Following the process of imputing the missing labels of unlabeled data, the human-labeled data and the data with imputed labels are used together as a training set for the credible classifiers learning. Meanwhile, we discuss how this proposed approach is more effective as compared to the traditional ensemble learning approaches. Our proposed approach is evaluated on different well-known benchmark data sets, and the experimental results show the effectiveness of the proposed method. In addition, the approach is validated by statistical analysis using Wilcoxon signed rank test and the results indicate statistical significance of the performance improvement in comparison with other methods.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43674-021-00015-7.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-021-00015-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00015-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在分类任务中,未标记的数据给学习过程带来了不确定性,可能导致性能下降。在本文中,我们提出了一种新的基于半监督初始神经网络集成的架构来实现缺失标签插补。所提出的架构的主要思想是在较大的集合中使用较小的集合,以涉及缺失标签插补和特征表示的内部转换的多种方式,从而提高预测精度。在对未标记数据的缺失标签进行输入的过程之后,将人类标记的数据和具有输入标签的数据一起用作可信分类器学习的训练集。同时,我们讨论了与传统的集成学习方法相比,该方法如何更有效。我们提出的方法在不同的知名基准数据集上进行了评估,实验结果表明了该方法的有效性。此外,该方法通过使用Wilcoxon符号秩检验的统计分析进行了验证,结果表明,与其他方法相比,该方法的性能改进具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missing label imputation through inception-based semi-supervised ensemble learning

In classification tasks, unlabeled data bring the uncertainty in the learning process, which may result in the degradation of the performance. In this paper, we propose a novel semi-supervised inception neural network ensemble-based architecture to achieve missing label imputation. The main idea of the proposed architecture is to use smaller ensembles within a larger ensemble to involve diverse ways of missing label imputation and internal transformation of feature representation, towards enhancing the prediction accuracy. Following the process of imputing the missing labels of unlabeled data, the human-labeled data and the data with imputed labels are used together as a training set for the credible classifiers learning. Meanwhile, we discuss how this proposed approach is more effective as compared to the traditional ensemble learning approaches. Our proposed approach is evaluated on different well-known benchmark data sets, and the experimental results show the effectiveness of the proposed method. In addition, the approach is validated by statistical analysis using Wilcoxon signed rank test and the results indicate statistical significance of the performance improvement in comparison with other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信