基于多智能体的铁路动态调度与优化:一个有色petri网模型

Poulami Dalapati, Kaushik Paul
{"title":"基于多智能体的铁路动态调度与优化:一个有色petri网模型","authors":"Poulami Dalapati,&nbsp;Kaushik Paul","doi":"10.1007/s43674-022-00039-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the issues concerning the rescheduling of a static timetable in case of a disaster, encountered in a large and complex railway network system. The proposed approach tries to modify the existing schedule to minimise the overall delay of trains. This is achieved by representing the rescheduling problem in the form of a Petri-Net and the highly uncertain disaster recovery time in such a model is handled as Markov decision processes (MDP). For solving the rescheduling problem, a distributed constraint optimisation (DCOP)-based strategy involving the use of autonomous agents is used to generate the desired schedule. The proposed approach is evaluated on the real-time data set taken from the Eastern Railways, India by constructing various disaster scenarios using the Java Agent DEvelopment Framework (JADE). The proposed framework, when compared to the existing approaches, substantially reduces the delay of trains after rescheduling.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-022-00039-7.pdf","citationCount":"1","resultStr":"{\"title\":\"Multi-agent-based dynamic railway scheduling and optimization: a coloured petri-net model\",\"authors\":\"Poulami Dalapati,&nbsp;Kaushik Paul\",\"doi\":\"10.1007/s43674-022-00039-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the issues concerning the rescheduling of a static timetable in case of a disaster, encountered in a large and complex railway network system. The proposed approach tries to modify the existing schedule to minimise the overall delay of trains. This is achieved by representing the rescheduling problem in the form of a Petri-Net and the highly uncertain disaster recovery time in such a model is handled as Markov decision processes (MDP). For solving the rescheduling problem, a distributed constraint optimisation (DCOP)-based strategy involving the use of autonomous agents is used to generate the desired schedule. The proposed approach is evaluated on the real-time data set taken from the Eastern Railways, India by constructing various disaster scenarios using the Java Agent DEvelopment Framework (JADE). The proposed framework, when compared to the existing approaches, substantially reduces the delay of trains after rescheduling.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43674-022-00039-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-022-00039-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-022-00039-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了在大型复杂铁路网系统中发生灾难时,静态时间表的重新安排问题。拟议的方法试图修改现有的时间表,以最大限度地减少列车的整体延误。这是通过将重新调度问题表示为Petri网的形式来实现的,并且这种模型中高度不确定的灾难恢复时间被处理为马尔可夫决策过程(MDP)。为了解决重新调度问题,使用了一种基于分布式约束优化(DCOP)的策略,包括使用自主代理来生成所需的调度。通过使用Java Agent DEvelopment Framework(JADE)构建各种灾难场景,在印度东部铁路公司的实时数据集上对所提出的方法进行了评估。与现有方法相比,拟议的框架大大减少了列车改期后的延误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-agent-based dynamic railway scheduling and optimization: a coloured petri-net model

Multi-agent-based dynamic railway scheduling and optimization: a coloured petri-net model

This paper addresses the issues concerning the rescheduling of a static timetable in case of a disaster, encountered in a large and complex railway network system. The proposed approach tries to modify the existing schedule to minimise the overall delay of trains. This is achieved by representing the rescheduling problem in the form of a Petri-Net and the highly uncertain disaster recovery time in such a model is handled as Markov decision processes (MDP). For solving the rescheduling problem, a distributed constraint optimisation (DCOP)-based strategy involving the use of autonomous agents is used to generate the desired schedule. The proposed approach is evaluated on the real-time data set taken from the Eastern Railways, India by constructing various disaster scenarios using the Java Agent DEvelopment Framework (JADE). The proposed framework, when compared to the existing approaches, substantially reduces the delay of trains after rescheduling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信