基于神经网络的油菜和豆油价格预测

Xiaojie Xu, Yun Zhang
{"title":"基于神经网络的油菜和豆油价格预测","authors":"Xiaojie Xu,&nbsp;Yun Zhang","doi":"10.1007/s43674-022-00045-9","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasts of commodity prices are vital issues to market participants and policy-makers. Those of cooking section oil are of no exception, considering its importance as one of main food resources. In the present study, we assess the forecast problem using weekly wholesale price indices of canola and soybean oil in China during January 1, 2010–January 3, 2020, by employing the non-linear auto-regressive neural network as the forecast tool. We evaluate forecast performance of different model settings over algorithms, delays, hidden neurons, and data splitting ratios in arriving at the final models for the two commodities, which are relatively simple and lead to accurate and stable results. Particularly, the model for the price index of canola oil generates relative root mean square errors of 2.66, 1.46, and 2.17% for training, validation, and testing, respectively, and the model for the price index of soybean oil generates relative root mean square errors of 2.33, 1.96, and 1.98% for training, validation, and testing, respectively. Through the analysis, we show usefulness of the neural network technique for commodity price forecasts. Our results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-022-00045-9.pdf","citationCount":"18","resultStr":"{\"title\":\"Canola and soybean oil price forecasts via neural networks\",\"authors\":\"Xiaojie Xu,&nbsp;Yun Zhang\",\"doi\":\"10.1007/s43674-022-00045-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasts of commodity prices are vital issues to market participants and policy-makers. Those of cooking section oil are of no exception, considering its importance as one of main food resources. In the present study, we assess the forecast problem using weekly wholesale price indices of canola and soybean oil in China during January 1, 2010–January 3, 2020, by employing the non-linear auto-regressive neural network as the forecast tool. We evaluate forecast performance of different model settings over algorithms, delays, hidden neurons, and data splitting ratios in arriving at the final models for the two commodities, which are relatively simple and lead to accurate and stable results. Particularly, the model for the price index of canola oil generates relative root mean square errors of 2.66, 1.46, and 2.17% for training, validation, and testing, respectively, and the model for the price index of soybean oil generates relative root mean square errors of 2.33, 1.96, and 1.98% for training, validation, and testing, respectively. Through the analysis, we show usefulness of the neural network technique for commodity price forecasts. Our results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"2 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43674-022-00045-9.pdf\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-022-00045-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-022-00045-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

对市场参与者和决策者来说,大宗商品价格预测是至关重要的问题。考虑到食用油作为主要食品资源之一的重要性,食用油也不例外。在本研究中,我们使用非线性自回归神经网络作为预测工具,使用2010年1月1日至2020年1月3日期间中国油菜籽和豆油的周批发价格指数来评估预测问题。我们评估了不同模型设置对算法、延迟、隐藏神经元和数据分割率的预测性能,以得出这两种商品的最终模型,这些模型相对简单,结果准确稳定。特别是,菜籽油价格指数模型在训练、验证和测试中分别产生2.66%、1.46%和2.17%的相对均方根误差,豆油价格指数模型对训练、验证、测试分别产生2.33%、1.96%和1.98%的相对均方误差。通过分析,我们展示了神经网络技术在商品价格预测中的有用性。我们的结果可以作为独立的技术预测,也可以与其他基本预测相结合,用于价格趋势和相应的政策分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Canola and soybean oil price forecasts via neural networks

Canola and soybean oil price forecasts via neural networks

Forecasts of commodity prices are vital issues to market participants and policy-makers. Those of cooking section oil are of no exception, considering its importance as one of main food resources. In the present study, we assess the forecast problem using weekly wholesale price indices of canola and soybean oil in China during January 1, 2010–January 3, 2020, by employing the non-linear auto-regressive neural network as the forecast tool. We evaluate forecast performance of different model settings over algorithms, delays, hidden neurons, and data splitting ratios in arriving at the final models for the two commodities, which are relatively simple and lead to accurate and stable results. Particularly, the model for the price index of canola oil generates relative root mean square errors of 2.66, 1.46, and 2.17% for training, validation, and testing, respectively, and the model for the price index of soybean oil generates relative root mean square errors of 2.33, 1.96, and 1.98% for training, validation, and testing, respectively. Through the analysis, we show usefulness of the neural network technique for commodity price forecasts. Our results might serve as technical forecasts on a standalone basis or be combined with other fundamental forecasts for perspectives of price trends and corresponding policy analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信