{"title":"GeoEye-1卫星图像的时空可转移图像融合技术","authors":"Mohamed Elshora","doi":"10.1007/s42401-023-00208-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposed a novel technique to solve the problem of color distortion in the fusion of the GeoEye-1 satellite's panchromatic (PAN) and multispectral (MS) images. This technique suggested reducing the difference in radiometry between the PAN and MS images by using modification coefficients for the MS bands in the definition of the intensity (I) equation, which guarantees using only the overlapped wavelengths with the PAN band. These modification coefficients achieve spatiotemporal transferability for the proposed fusion technique. As the reflectance of vegetation is high in the NIR band and low in the RGB bands, this technique suggested using an additional coefficient for the NIR band in the definition of the I equation, which varies based on the ratio of the agricultural features within the image, to indicate the correct impact of vegetation. This vegetation coefficient provides stability for the proposed fusion technique across all land cover classes. This study used three datasets of GeoEye-1 satellite PAN and MS images in Tanta City, Egypt, with different land cover classes (agricultural, urban, and mixed areas), to evaluate the performance of this technique against five different standard image fusion techniques. In addition, it was validated using six additional datasets from different locations and acquired at different times to test its spatiotemporal transferability. The proposed fusion technique demonstrated spatiotemporal transferability as well as great efficiency in producing fused images of superior spatial and spectral quality for all types of land cover.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"6 2","pages":"305 - 322"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-023-00208-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A spatiotemporal transferable image fusion technique for GeoEye-1 satellite imagery\",\"authors\":\"Mohamed Elshora\",\"doi\":\"10.1007/s42401-023-00208-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposed a novel technique to solve the problem of color distortion in the fusion of the GeoEye-1 satellite's panchromatic (PAN) and multispectral (MS) images. This technique suggested reducing the difference in radiometry between the PAN and MS images by using modification coefficients for the MS bands in the definition of the intensity (I) equation, which guarantees using only the overlapped wavelengths with the PAN band. These modification coefficients achieve spatiotemporal transferability for the proposed fusion technique. As the reflectance of vegetation is high in the NIR band and low in the RGB bands, this technique suggested using an additional coefficient for the NIR band in the definition of the I equation, which varies based on the ratio of the agricultural features within the image, to indicate the correct impact of vegetation. This vegetation coefficient provides stability for the proposed fusion technique across all land cover classes. This study used three datasets of GeoEye-1 satellite PAN and MS images in Tanta City, Egypt, with different land cover classes (agricultural, urban, and mixed areas), to evaluate the performance of this technique against five different standard image fusion techniques. In addition, it was validated using six additional datasets from different locations and acquired at different times to test its spatiotemporal transferability. The proposed fusion technique demonstrated spatiotemporal transferability as well as great efficiency in producing fused images of superior spatial and spectral quality for all types of land cover.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"6 2\",\"pages\":\"305 - 322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42401-023-00208-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-023-00208-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00208-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
A spatiotemporal transferable image fusion technique for GeoEye-1 satellite imagery
This study proposed a novel technique to solve the problem of color distortion in the fusion of the GeoEye-1 satellite's panchromatic (PAN) and multispectral (MS) images. This technique suggested reducing the difference in radiometry between the PAN and MS images by using modification coefficients for the MS bands in the definition of the intensity (I) equation, which guarantees using only the overlapped wavelengths with the PAN band. These modification coefficients achieve spatiotemporal transferability for the proposed fusion technique. As the reflectance of vegetation is high in the NIR band and low in the RGB bands, this technique suggested using an additional coefficient for the NIR band in the definition of the I equation, which varies based on the ratio of the agricultural features within the image, to indicate the correct impact of vegetation. This vegetation coefficient provides stability for the proposed fusion technique across all land cover classes. This study used three datasets of GeoEye-1 satellite PAN and MS images in Tanta City, Egypt, with different land cover classes (agricultural, urban, and mixed areas), to evaluate the performance of this technique against five different standard image fusion techniques. In addition, it was validated using six additional datasets from different locations and acquired at different times to test its spatiotemporal transferability. The proposed fusion technique demonstrated spatiotemporal transferability as well as great efficiency in producing fused images of superior spatial and spectral quality for all types of land cover.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion