{"title":"可划分刚性群。Morley等级","authors":"N. S. Romanovskii","doi":"10.1007/s10469-022-09689-5","DOIUrl":null,"url":null,"abstract":"<div><div><p>Let <i>G</i> be a countable saturated model of the theory 𝔗<sub><i>m</i></sub> of divisible m-rigid groups. Fix the splitting <i>G</i><sub>1</sub><i>G</i><sub>2</sub> . . .<i>G</i><sub><i>m</i></sub> of a group G into a semidirect product of Abelian groups. With each tuple (<i>n</i><sub>1</sub>, . . . , <i>n</i><sub><i>m</i></sub>) of nonnegative integers we associate an ordinal <i>α</i> = <i>ω</i><sup><i>m</i>−1</sup><i>n</i><sub><i>m</i></sub>+ . . . + <i>ωn</i><sub>2</sub> + <i>n</i><sub>1</sub> and denote by <i>G</i><sup>(<i>α</i>)</sup> the set <span>\\( {G}_1^{n_1}\\times {G}_2^{n_2}\\times \\dots \\times {G}_m^{n_m} \\)</span>, which is definable over <i>G</i> in <span>\\( {G}^{n_1+\\dots +{n}_m} \\)</span>. Then the Morley rank of <i>G</i><sup>(<i>α</i>)</sup> with respect to <i>G</i> is equal to <i>α</i>. This implies that RM (<i>G</i>) = <i>ω</i><sup><i>m</i>−1</sup> + <i>ω</i><sup><i>m</i>−2</sup> + . . . + 1.</p></div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisible Rigid Groups. Morley Rank\",\"authors\":\"N. S. Romanovskii\",\"doi\":\"10.1007/s10469-022-09689-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>Let <i>G</i> be a countable saturated model of the theory 𝔗<sub><i>m</i></sub> of divisible m-rigid groups. Fix the splitting <i>G</i><sub>1</sub><i>G</i><sub>2</sub> . . .<i>G</i><sub><i>m</i></sub> of a group G into a semidirect product of Abelian groups. With each tuple (<i>n</i><sub>1</sub>, . . . , <i>n</i><sub><i>m</i></sub>) of nonnegative integers we associate an ordinal <i>α</i> = <i>ω</i><sup><i>m</i>−1</sup><i>n</i><sub><i>m</i></sub>+ . . . + <i>ωn</i><sub>2</sub> + <i>n</i><sub>1</sub> and denote by <i>G</i><sup>(<i>α</i>)</sup> the set <span>\\\\( {G}_1^{n_1}\\\\times {G}_2^{n_2}\\\\times \\\\dots \\\\times {G}_m^{n_m} \\\\)</span>, which is definable over <i>G</i> in <span>\\\\( {G}^{n_1+\\\\dots +{n}_m} \\\\)</span>. Then the Morley rank of <i>G</i><sup>(<i>α</i>)</sup> with respect to <i>G</i> is equal to <i>α</i>. This implies that RM (<i>G</i>) = <i>ω</i><sup><i>m</i>−1</sup> + <i>ω</i><sup><i>m</i>−2</sup> + . . . + 1.</p></div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09689-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09689-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G be a countable saturated model of the theory 𝔗m of divisible m-rigid groups. Fix the splitting G1G2 . . .Gm of a group G into a semidirect product of Abelian groups. With each tuple (n1, . . . , nm) of nonnegative integers we associate an ordinal α = ωm−1nm+ . . . + ωn2 + n1 and denote by G(α) the set \( {G}_1^{n_1}\times {G}_2^{n_2}\times \dots \times {G}_m^{n_m} \), which is definable over G in \( {G}^{n_1+\dots +{n}_m} \). Then the Morley rank of G(α) with respect to G is equal to α. This implies that RM (G) = ωm−1 + ωm−2 + . . . + 1.