接近无粘壁面的反向旋转涡对的线性稳定性

IF 2.2 3区 工程技术 Q2 MECHANICS
Mark A. Herndon, Justin W. Jaworski
{"title":"接近无粘壁面的反向旋转涡对的线性稳定性","authors":"Mark A. Herndon,&nbsp;Justin W. Jaworski","doi":"10.1007/s00162-023-00660-3","DOIUrl":null,"url":null,"abstract":"<p>The influence of an inviscid planar wall on the temporal development of the long-wavelength instability of a trailing vortex pair is formulated analytically and studied numerically. The center positions and deformation perturbations of the trailing vortices are marched forward in time via the vortex filament method based on Biot–Savart induction. An optimal perturbation analysis of the vortex system determines the wavenumber and initial condition that yield maximum perturbation growth for any instant in time. Direct integration of the vortex system highlights its sensitivity to initial conditions and the time dependence of the optimal wavenumber, which are not features of the classical free vortex pair. As the counter-rotating vortex pair approaches the wall, the wavenumber for maximum growth shifts to a higher value than what is predicted for the Crow instability of vortices in an unbounded fluid. The present analysis demonstrates that the local suppression of the Crow instability near a planar wall may be described without recourse to viscous fluid arguments.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"37 4","pages":"519 - 532"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-023-00660-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear stability of a counter-rotating vortex pair approaching an inviscid wall\",\"authors\":\"Mark A. Herndon,&nbsp;Justin W. Jaworski\",\"doi\":\"10.1007/s00162-023-00660-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of an inviscid planar wall on the temporal development of the long-wavelength instability of a trailing vortex pair is formulated analytically and studied numerically. The center positions and deformation perturbations of the trailing vortices are marched forward in time via the vortex filament method based on Biot–Savart induction. An optimal perturbation analysis of the vortex system determines the wavenumber and initial condition that yield maximum perturbation growth for any instant in time. Direct integration of the vortex system highlights its sensitivity to initial conditions and the time dependence of the optimal wavenumber, which are not features of the classical free vortex pair. As the counter-rotating vortex pair approaches the wall, the wavenumber for maximum growth shifts to a higher value than what is predicted for the Crow instability of vortices in an unbounded fluid. The present analysis demonstrates that the local suppression of the Crow instability near a planar wall may be described without recourse to viscous fluid arguments.</p>\",\"PeriodicalId\":795,\"journal\":{\"name\":\"Theoretical and Computational Fluid Dynamics\",\"volume\":\"37 4\",\"pages\":\"519 - 532\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00162-023-00660-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00162-023-00660-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-023-00660-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文对无粘平面壁面对尾涡对长波不稳定性随时间发展的影响进行了分析和数值研究。采用基于Biot-Savart感应的涡丝法对尾涡的中心位置和变形扰动进行了时间推进。涡旋系统的最优摄动分析确定了在任意时刻产生最大摄动增长的波数和初始条件。旋涡系统的直接积分突出了其对初始条件的敏感性和最优波数的时间依赖性,而这些都是经典自由旋涡对所不具备的特征。当反向旋转的涡旋对接近壁面时,最大增长的波数会比无界流体中涡旋克罗不稳定性的预测值更高。本文的分析表明,在平面壁面附近克罗不稳定性的局部抑制可以不依赖于粘性流体参数来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Linear stability of a counter-rotating vortex pair approaching an inviscid wall

Linear stability of a counter-rotating vortex pair approaching an inviscid wall

The influence of an inviscid planar wall on the temporal development of the long-wavelength instability of a trailing vortex pair is formulated analytically and studied numerically. The center positions and deformation perturbations of the trailing vortices are marched forward in time via the vortex filament method based on Biot–Savart induction. An optimal perturbation analysis of the vortex system determines the wavenumber and initial condition that yield maximum perturbation growth for any instant in time. Direct integration of the vortex system highlights its sensitivity to initial conditions and the time dependence of the optimal wavenumber, which are not features of the classical free vortex pair. As the counter-rotating vortex pair approaches the wall, the wavenumber for maximum growth shifts to a higher value than what is predicted for the Crow instability of vortices in an unbounded fluid. The present analysis demonstrates that the local suppression of the Crow instability near a planar wall may be described without recourse to viscous fluid arguments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信