{"title":"管理糖尿病的透明机器学习算法:TDMSML","authors":"Amrit Kumar Verma, Saroj Kr. Biswas, Manomita Chakraborty, Arpita Nath Boruah","doi":"10.1007/s43674-022-00051-x","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes is nowadays a very common medical problem among the people worldwide. The disease is becoming more prevalent with the modern and hectic lifestyle followed by people. As a result, designing an adequate medical expert system to assist physicians in treating the disease on time is critical. Expert systems are required to identify the major cause(s) of the disease, so that precautionary measures can be taken ahead of time. Several medical expert systems have already been proposed, but each has its own set of shortcomings, such as the use of trial and error methods, trivial decision-making procedures, and so on. As a result, this paper proposes a Transparent Diabetes Management System Using Machine Learning (TDMSML) expert system that uses decision tree rules to identify the major factor(s) of diabetes. The TDMSML model comprises of three phases: rule generation, transparent rule selection, and major factor identification. The rule generation phase generates rules using decision tree. Transparent rule selection stage selects the transparent rules followed by pruning the redundant rules to get the minimized rule-set. The major factor identification stage extracts the major factor(s) with range(s) from the minimized rule-set. These factor(s) with certain range(s) are characterized as major cause(s) of diabetes disease. The model is validated with the Pima Indian diabetes data set collected from Kaggle.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transparent machine learning algorithm to manage diabetes: TDMSML\",\"authors\":\"Amrit Kumar Verma, Saroj Kr. Biswas, Manomita Chakraborty, Arpita Nath Boruah\",\"doi\":\"10.1007/s43674-022-00051-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes is nowadays a very common medical problem among the people worldwide. The disease is becoming more prevalent with the modern and hectic lifestyle followed by people. As a result, designing an adequate medical expert system to assist physicians in treating the disease on time is critical. Expert systems are required to identify the major cause(s) of the disease, so that precautionary measures can be taken ahead of time. Several medical expert systems have already been proposed, but each has its own set of shortcomings, such as the use of trial and error methods, trivial decision-making procedures, and so on. As a result, this paper proposes a Transparent Diabetes Management System Using Machine Learning (TDMSML) expert system that uses decision tree rules to identify the major factor(s) of diabetes. The TDMSML model comprises of three phases: rule generation, transparent rule selection, and major factor identification. The rule generation phase generates rules using decision tree. Transparent rule selection stage selects the transparent rules followed by pruning the redundant rules to get the minimized rule-set. The major factor identification stage extracts the major factor(s) with range(s) from the minimized rule-set. These factor(s) with certain range(s) are characterized as major cause(s) of diabetes disease. The model is validated with the Pima Indian diabetes data set collected from Kaggle.</p></div>\",\"PeriodicalId\":72089,\"journal\":{\"name\":\"Advances in computational intelligence\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in computational intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43674-022-00051-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-022-00051-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A transparent machine learning algorithm to manage diabetes: TDMSML
Diabetes is nowadays a very common medical problem among the people worldwide. The disease is becoming more prevalent with the modern and hectic lifestyle followed by people. As a result, designing an adequate medical expert system to assist physicians in treating the disease on time is critical. Expert systems are required to identify the major cause(s) of the disease, so that precautionary measures can be taken ahead of time. Several medical expert systems have already been proposed, but each has its own set of shortcomings, such as the use of trial and error methods, trivial decision-making procedures, and so on. As a result, this paper proposes a Transparent Diabetes Management System Using Machine Learning (TDMSML) expert system that uses decision tree rules to identify the major factor(s) of diabetes. The TDMSML model comprises of three phases: rule generation, transparent rule selection, and major factor identification. The rule generation phase generates rules using decision tree. Transparent rule selection stage selects the transparent rules followed by pruning the redundant rules to get the minimized rule-set. The major factor identification stage extracts the major factor(s) with range(s) from the minimized rule-set. These factor(s) with certain range(s) are characterized as major cause(s) of diabetes disease. The model is validated with the Pima Indian diabetes data set collected from Kaggle.