关于一类高阶递推关系:对称性、公式解、周期性和稳定性分析

IF 0.9 Q2 MATHEMATICS
Mensah Folly-Gbetoula
{"title":"关于一类高阶递推关系:对称性、公式解、周期性和稳定性分析","authors":"Mensah Folly-Gbetoula","doi":"10.1007/s40065-023-00438-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present formula solutions of a family of difference equations of higher order. We discuss the periodic nature of the solutions and we investigate the stability character of the equilibrium points. We utilize Lie symmetry analysis as part of our approach together with some number theoretic functions. Our findings generalize certain results in the literature.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"12 3","pages":"541 - 551"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-023-00438-9.pdf","citationCount":"0","resultStr":"{\"title\":\"On a family of higher order recurrence relations: symmetries, formula solutions, periodicity and stability analysis\",\"authors\":\"Mensah Folly-Gbetoula\",\"doi\":\"10.1007/s40065-023-00438-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present formula solutions of a family of difference equations of higher order. We discuss the periodic nature of the solutions and we investigate the stability character of the equilibrium points. We utilize Lie symmetry analysis as part of our approach together with some number theoretic functions. Our findings generalize certain results in the literature.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"12 3\",\"pages\":\"541 - 551\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-023-00438-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-023-00438-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-023-00438-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类高阶差分方程组的公式解。我们讨论了解的周期性,并研究了平衡点的稳定性。我们将李对称性分析与一些数论函数一起作为我们方法的一部分。我们的发现概括了文献中的某些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On a family of higher order recurrence relations: symmetries, formula solutions, periodicity and stability analysis

On a family of higher order recurrence relations: symmetries, formula solutions, periodicity and stability analysis

In this paper, we present formula solutions of a family of difference equations of higher order. We discuss the periodic nature of the solutions and we investigate the stability character of the equilibrium points. We utilize Lie symmetry analysis as part of our approach together with some number theoretic functions. Our findings generalize certain results in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信