晶体非线性压电材料的张量对称性

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
A. F. Jaramillo Alvarado, A. Torres Jacome, F. J. de la Hidalga-Wade, P. Rosales-Quintero, Arturo Ponce
{"title":"晶体非线性压电材料的张量对称性","authors":"A. F. Jaramillo Alvarado,&nbsp;A. Torres Jacome,&nbsp;F. J. de la Hidalga-Wade,&nbsp;P. Rosales-Quintero,&nbsp;Arturo Ponce","doi":"10.1007/s10832-022-00289-4","DOIUrl":null,"url":null,"abstract":"<div><p>The new technologies such as the fifth generation of telecommunications (5G) and the internet of things (IoT) present a set of demanding technical requirements at device level that can be reached through devices based on piezoelectric materials using nonlinear effects to increase their performance. However, in the literature can not be found a physics formulation for the unified nonlinear effects of these materials that allow an easy implementation in FEM simulators. Thus, in this work we use the stress-charge formulation to obtain the transformation laws, the unique components of the higher order tensors and the equations of state, which unify the nonlinear phenomena of the piezoelectric effect reported experimentally and, which can be used to increase the performance of the devices and extend the range of applications based on these materials. In addition, the methodology for their implementation on the main FEM simulators is presented.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"49 1","pages":"22 - 32"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensors symmetry of crystalline nonlinear piezoelectric materials\",\"authors\":\"A. F. Jaramillo Alvarado,&nbsp;A. Torres Jacome,&nbsp;F. J. de la Hidalga-Wade,&nbsp;P. Rosales-Quintero,&nbsp;Arturo Ponce\",\"doi\":\"10.1007/s10832-022-00289-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The new technologies such as the fifth generation of telecommunications (5G) and the internet of things (IoT) present a set of demanding technical requirements at device level that can be reached through devices based on piezoelectric materials using nonlinear effects to increase their performance. However, in the literature can not be found a physics formulation for the unified nonlinear effects of these materials that allow an easy implementation in FEM simulators. Thus, in this work we use the stress-charge formulation to obtain the transformation laws, the unique components of the higher order tensors and the equations of state, which unify the nonlinear phenomena of the piezoelectric effect reported experimentally and, which can be used to increase the performance of the devices and extend the range of applications based on these materials. In addition, the methodology for their implementation on the main FEM simulators is presented.</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"49 1\",\"pages\":\"22 - 32\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-022-00289-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-022-00289-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

第五代电信(5G)和物联网(IoT)等新技术在设备层面提出了一系列苛刻的技术要求,这些要求可以通过基于压电材料的设备来实现,利用非线性效应来提高其性能。然而,在文献中无法找到一个物理公式来统一这些材料的非线性效应,使其易于在FEM模拟器中实现。因此,在这项工作中,我们使用应力-电荷公式获得了转换定律,高阶张量的唯一分量和状态方程,这些方程统一了实验报道的压电效应的非线性现象,可以用来提高器件的性能和扩大基于这些材料的应用范围。此外,还介绍了它们在主要有限元仿真器上的实现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tensors symmetry of crystalline nonlinear piezoelectric materials

Tensors symmetry of crystalline nonlinear piezoelectric materials

The new technologies such as the fifth generation of telecommunications (5G) and the internet of things (IoT) present a set of demanding technical requirements at device level that can be reached through devices based on piezoelectric materials using nonlinear effects to increase their performance. However, in the literature can not be found a physics formulation for the unified nonlinear effects of these materials that allow an easy implementation in FEM simulators. Thus, in this work we use the stress-charge formulation to obtain the transformation laws, the unique components of the higher order tensors and the equations of state, which unify the nonlinear phenomena of the piezoelectric effect reported experimentally and, which can be used to increase the performance of the devices and extend the range of applications based on these materials. In addition, the methodology for their implementation on the main FEM simulators is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信