{"title":"关于\\(\\mathrm的标准L函数{GSp}_{2n}\\times\\mathrm{GL}_1\\)关于\\(\\mathrm)对称第四个L-值的代数性{GL}_2\\)","authors":"Ameya Pitale, Abhishek Saha, Ralf Schmidt","doi":"10.1007/s40316-020-00134-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard <i>L</i>-function associated to a holomorphic vector-valued Siegel cusp form of degree <i>n</i> and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to <i>L</i>-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case <span>\\(n=2\\)</span> we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard <i>L</i>-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth <i>L</i>-function of a classical newform.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"113 - 159"},"PeriodicalIF":0.5000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00134-6","citationCount":"1","resultStr":"{\"title\":\"On the standard L-function for \\\\(\\\\mathrm{GSp}_{2n} \\\\times \\\\mathrm{GL}_1\\\\) and algebraicity of symmetric fourth L-values for \\\\(\\\\mathrm{GL}_2\\\\)\",\"authors\":\"Ameya Pitale, Abhishek Saha, Ralf Schmidt\",\"doi\":\"10.1007/s40316-020-00134-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard <i>L</i>-function associated to a holomorphic vector-valued Siegel cusp form of degree <i>n</i> and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to <i>L</i>-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case <span>\\\\(n=2\\\\)</span> we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard <i>L</i>-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth <i>L</i>-function of a classical newform.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"45 1\",\"pages\":\"113 - 159\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-020-00134-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-020-00134-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00134-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the standard L-function for \(\mathrm{GSp}_{2n} \times \mathrm{GL}_1\) and algebraicity of symmetric fourth L-values for \(\mathrm{GL}_2\)
We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard L-function associated to a holomorphic vector-valued Siegel cusp form of degree n and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to L-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case \(n=2\) we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard L-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth L-function of a classical newform.
期刊介绍:
The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science.
Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages.
History:
The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique.
On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues.
Histoire:
La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.