关于\(\mathrm的标准L函数{GSp}_{2n}\times\mathrm{GL}_1\)关于\(\mathrm)对称第四个L-值的代数性{GL}_2\)

IF 0.5 Q3 MATHEMATICS
Ameya Pitale, Abhishek Saha, Ralf Schmidt
{"title":"关于\\(\\mathrm的标准L函数{GSp}_{2n}\\times\\mathrm{GL}_1\\)关于\\(\\mathrm)对称第四个L-值的代数性{GL}_2\\)","authors":"Ameya Pitale,&nbsp;Abhishek Saha,&nbsp;Ralf Schmidt","doi":"10.1007/s40316-020-00134-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard <i>L</i>-function associated to a holomorphic vector-valued Siegel cusp form of degree <i>n</i> and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to <i>L</i>-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case <span>\\(n=2\\)</span> we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard <i>L</i>-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth <i>L</i>-function of a classical newform.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"113 - 159"},"PeriodicalIF":0.5000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00134-6","citationCount":"1","resultStr":"{\"title\":\"On the standard L-function for \\\\(\\\\mathrm{GSp}_{2n} \\\\times \\\\mathrm{GL}_1\\\\) and algebraicity of symmetric fourth L-values for \\\\(\\\\mathrm{GL}_2\\\\)\",\"authors\":\"Ameya Pitale,&nbsp;Abhishek Saha,&nbsp;Ralf Schmidt\",\"doi\":\"10.1007/s40316-020-00134-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard <i>L</i>-function associated to a holomorphic vector-valued Siegel cusp form of degree <i>n</i> and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to <i>L</i>-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case <span>\\\\(n=2\\\\)</span> we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard <i>L</i>-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth <i>L</i>-function of a classical newform.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"45 1\",\"pages\":\"113 - 159\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-020-00134-6\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-020-00134-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00134-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了与n次和任意级别的全纯向量值Siegel尖点形式相关的扭曲标准L函数的显式积分表示,包括适当的Siegel-Esenstein级数的回调。与之前在这种情况下证明的所有回调公式相反,尽管我们的公式适用于向量值Siegel尖点形式的L函数,但它只涉及标量值函数。我们方法中的关键新成分是在阿基米德位置选择新的局部向量,这使我们能够准确地计算阿基米德局部积分。通过将我们的积分表示专门化为情况\(n=2\),我们能够证明由Deligne猜想预测的互惠律,该互惠律适用于2阶和任意级别的向量值Siegel尖点形式的扭曲标准L函数的临界值。该算法应用推广了先前证明的全水平情况下的临界值结果。通过进一步专门化通过Ramakrishnan–Shahidi提升获得的Siegel尖点形式的情况,我们获得了经典新形式的对称第四L函数的临界值的互易律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the standard L-function for \(\mathrm{GSp}_{2n} \times \mathrm{GL}_1\) and algebraicity of symmetric fourth L-values for \(\mathrm{GL}_2\)

We prove an explicit integral representation—involving the pullback of a suitable Siegel Eisenstein series—for the twisted standard L-function associated to a holomorphic vector-valued Siegel cusp form of degree n and arbitrary level. In contrast to all previously proved pullback formulas in this situation, our formula involves only scalar-valued functions despite being applicable to L-functions of vector-valued Siegel cusp forms. The key new ingredient in our method is a novel choice of local vectors at the archimedean place which allows us to exactly compute the archimedean local integral. By specializing our integral representation to the case \(n=2\) we are able to prove a reciprocity law—predicted by Deligne’s conjecture—for the critical values of the twisted standard L-function for vector-valued Siegel cusp forms of degree 2 and arbitrary level. This arithmetic application generalizes previously proved critical-value results for the full level case. By specializing further to the case of Siegel cusp forms obtained via the Ramakrishnan–Shahidi lift, we obtain a reciprocity law for the critical values of the symmetric fourth L-function of a classical newform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信