解释\(\mathrm的理论{GL}_2\times\mathrm{Res}_{K/\mathbb{Q}\mathrm{GL}_1(电话铃声)

IF 0.5 Q3 MATHEMATICS
Kâzim Büyükboduk, Antonio Lei
{"title":"解释\\(\\mathrm的理论{GL}_2\\times\\mathrm{Res}_{K/\\mathbb{Q}\\mathrm{GL}_1(电话铃声)","authors":"Kâzim Büyükboduk,&nbsp;Antonio Lei","doi":"10.1007/s40316-022-00197-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>K</i> be an imaginary quadratic field where the prime <i>p</i> splits. Our goal in this article is to prove results towards the Iwasawa main conjectures for <i>p</i>-nearly-ordinary families associated to <span>\\(\\mathrm {GL}_2\\times \\mathrm {Res}_{K/\\mathbb {Q}}\\mathrm {GL}_1\\)</span> with a minimal set of assumptions. The main technical input is an improvement on the locally restricted Euler system machinery that allows the treatment of residually reducible cases, which we apply with the Beilinson–Flach Euler system.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 2","pages":"347 - 418"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40316-022-00197-7.pdf","citationCount":"1","resultStr":"{\"title\":\"Iwasawa theory for \\\\(\\\\mathrm {GL}_2\\\\times \\\\mathrm {Res}_{K/\\\\mathbb {Q}}\\\\mathrm {GL}_1\\\\)\",\"authors\":\"Kâzim Büyükboduk,&nbsp;Antonio Lei\",\"doi\":\"10.1007/s40316-022-00197-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>K</i> be an imaginary quadratic field where the prime <i>p</i> splits. Our goal in this article is to prove results towards the Iwasawa main conjectures for <i>p</i>-nearly-ordinary families associated to <span>\\\\(\\\\mathrm {GL}_2\\\\times \\\\mathrm {Res}_{K/\\\\mathbb {Q}}\\\\mathrm {GL}_1\\\\)</span> with a minimal set of assumptions. The main technical input is an improvement on the locally restricted Euler system machinery that allows the treatment of residually reducible cases, which we apply with the Beilinson–Flach Euler system.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"46 2\",\"pages\":\"347 - 418\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40316-022-00197-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-022-00197-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-022-00197-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设K是素数p分裂的虚二次域。本文的目的是证明与\(\mathrm)相关的p-近平凡族的Iwasawa主要猜想的结果{GL}_2\times\mathrm{Res}_{K/\mathbb{Q}}\mathrm{GL}_1\)用一组最小的假设。主要的技术投入是对局部受限欧拉系统机制的改进,该机制允许处理剩余可约情况,我们将其应用于Beilinson–Flach欧拉系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iwasawa theory for \(\mathrm {GL}_2\times \mathrm {Res}_{K/\mathbb {Q}}\mathrm {GL}_1\)

Let K be an imaginary quadratic field where the prime p splits. Our goal in this article is to prove results towards the Iwasawa main conjectures for p-nearly-ordinary families associated to \(\mathrm {GL}_2\times \mathrm {Res}_{K/\mathbb {Q}}\mathrm {GL}_1\) with a minimal set of assumptions. The main technical input is an improvement on the locally restricted Euler system machinery that allows the treatment of residually reducible cases, which we apply with the Beilinson–Flach Euler system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信