四肢\(\varvec{\p,q\})-动物

Pub Date : 2023-01-06 DOI:10.1007/s00026-022-00631-1
Greg Malen, Érika Roldán, Rosemberg Toalá-Enríquez
{"title":"四肢\\(\\varvec{\\p,q\\})-动物","authors":"Greg Malen,&nbsp;Érika Roldán,&nbsp;Rosemberg Toalá-Enríquez","doi":"10.1007/s00026-022-00631-1","DOIUrl":null,"url":null,"abstract":"<div><p>An animal is a planar shape formed by attaching congruent regular polygons along their edges. Usually, these polygons are a finite subset of tiles of a regular planar tessellation. These tessellations can be parameterized using the Schläfli symbol <span>\\(\\{p,q\\}\\)</span>, where <i>p</i> denotes the number of sides of the regular polygon forming the tessellation and <i>q</i> is the number of edges or tiles meeting at each vertex. If <span>\\((p-2)(q-2)&gt; 4\\)</span>, <span>\\(=4\\)</span>, or <span>\\(&lt;4\\)</span>, then the tessellation corresponds to the geometry of the hyperbolic plane, the Euclidean plane, or the sphere, respectively. In 1976, Harary and Harborth studied animals defined on regular tessellations of the Euclidean plane, finding extremal values for their vertices, edges, and tiles, when any one of these parameters is fixed. They named animals attaining these extremal values as <i>extremal animals</i>. Here, we study hyperbolic extremal animals. For each <span>\\(\\{p,q\\}\\)</span> corresponding to a hyperbolic tessellation, we exhibit a sequence of spiral animals and prove that they attain the minimum numbers of edges and vertices within the class of animals with <i>n</i> tiles. We also give the first results on enumeration of extremal hyperbolic animals by finding special sequences of extremal animals that are <i>unique</i> extremal animals, in the sense that any animal with the same number of tiles which is distinct up to isometries cannot be extremal.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00631-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Extremal \\\\(\\\\varvec{\\\\{ p, q \\\\}}\\\\)-Animals\",\"authors\":\"Greg Malen,&nbsp;Érika Roldán,&nbsp;Rosemberg Toalá-Enríquez\",\"doi\":\"10.1007/s00026-022-00631-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An animal is a planar shape formed by attaching congruent regular polygons along their edges. Usually, these polygons are a finite subset of tiles of a regular planar tessellation. These tessellations can be parameterized using the Schläfli symbol <span>\\\\(\\\\{p,q\\\\}\\\\)</span>, where <i>p</i> denotes the number of sides of the regular polygon forming the tessellation and <i>q</i> is the number of edges or tiles meeting at each vertex. If <span>\\\\((p-2)(q-2)&gt; 4\\\\)</span>, <span>\\\\(=4\\\\)</span>, or <span>\\\\(&lt;4\\\\)</span>, then the tessellation corresponds to the geometry of the hyperbolic plane, the Euclidean plane, or the sphere, respectively. In 1976, Harary and Harborth studied animals defined on regular tessellations of the Euclidean plane, finding extremal values for their vertices, edges, and tiles, when any one of these parameters is fixed. They named animals attaining these extremal values as <i>extremal animals</i>. Here, we study hyperbolic extremal animals. For each <span>\\\\(\\\\{p,q\\\\}\\\\)</span> corresponding to a hyperbolic tessellation, we exhibit a sequence of spiral animals and prove that they attain the minimum numbers of edges and vertices within the class of animals with <i>n</i> tiles. We also give the first results on enumeration of extremal hyperbolic animals by finding special sequences of extremal animals that are <i>unique</i> extremal animals, in the sense that any animal with the same number of tiles which is distinct up to isometries cannot be extremal.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00026-022-00631-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00631-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00631-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动物是一种平面形状,通过沿其边缘连接全等的正多边形而形成。通常,这些多边形是规则平面镶嵌的瓦片的有限子集。这些镶嵌可以使用Schläfli符号\(\{p,q\}\)进行参数化,其中p表示形成镶嵌的正多边形的边数,q是在每个顶点相交的边或瓦片数。如果\((p-2)(q-2)>;4\)、\(=4\)或\(<;4\),则镶嵌分别对应于双曲平面、欧几里得平面或球体的几何图形。1976年,Harary和Harborth研究了在欧几里得平面的规则镶嵌上定义的动物,当这些参数中的任何一个固定时,为它们的顶点、边和瓦片找到极值。他们将达到这些极值的动物命名为极值动物。在这里,我们研究双曲型极端动物。对于对应于双曲镶嵌的每个\(\{p,q\}\),我们展示了一个螺旋动物序列,并证明它们在具有n个瓦片的动物类中获得了最小数量的边和顶点。我们还通过寻找极端动物的特殊序列,给出了极端双曲动物计数的第一个结果,这些极端动物是独特的极端动物,从这个意义上说,任何具有相同数量的瓦片(直到等距为止都是不同的)的动物都不可能是极端的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extremal \(\varvec{\{ p, q \}}\)-Animals

分享
查看原文
Extremal \(\varvec{\{ p, q \}}\)-Animals

An animal is a planar shape formed by attaching congruent regular polygons along their edges. Usually, these polygons are a finite subset of tiles of a regular planar tessellation. These tessellations can be parameterized using the Schläfli symbol \(\{p,q\}\), where p denotes the number of sides of the regular polygon forming the tessellation and q is the number of edges or tiles meeting at each vertex. If \((p-2)(q-2)> 4\), \(=4\), or \(<4\), then the tessellation corresponds to the geometry of the hyperbolic plane, the Euclidean plane, or the sphere, respectively. In 1976, Harary and Harborth studied animals defined on regular tessellations of the Euclidean plane, finding extremal values for their vertices, edges, and tiles, when any one of these parameters is fixed. They named animals attaining these extremal values as extremal animals. Here, we study hyperbolic extremal animals. For each \(\{p,q\}\) corresponding to a hyperbolic tessellation, we exhibit a sequence of spiral animals and prove that they attain the minimum numbers of edges and vertices within the class of animals with n tiles. We also give the first results on enumeration of extremal hyperbolic animals by finding special sequences of extremal animals that are unique extremal animals, in the sense that any animal with the same number of tiles which is distinct up to isometries cannot be extremal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信