关于Riemann-Schwarzschild AdS中自由边界极小曲面的指数

Pub Date : 2023-10-04 DOI:10.1007/s10455-023-09925-w
Justin Corvino, Elene Karangozishvili, Deniz Ozbay
{"title":"关于Riemann-Schwarzschild AdS中自由边界极小曲面的指数","authors":"Justin Corvino,&nbsp;Elene Karangozishvili,&nbsp;Deniz Ozbay","doi":"10.1007/s10455-023-09925-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the index of a certain non-compact free-boundary minimal surface with boundary on the rotationally symmetric minimal sphere in the Schwarzschild-AdS geometry with <span>\\(m&gt;0\\)</span>. As in the Schwarzschild case, we show that in dimensions <span>\\(n\\ge 4\\)</span>, the surface is stable, whereas in dimension three, the stability depends on the value of the mass <span>\\(m&gt;0\\)</span> and the cosmological constant <span>\\(\\Lambda &lt;0\\)</span> via the parameter <span>\\(\\mu :=m\\sqrt{-\\Lambda /3}\\)</span>. We show that while for <span>\\(\\mu \\ge \\tfrac{5}{27}\\)</span> the surface is stable, there exist positive numbers <span>\\(\\mu _0\\)</span> and <span>\\(\\mu _1\\)</span>, with <span>\\(\\mu _1&lt;\\tfrac{5}{27}\\)</span>, such that for <span>\\(0&lt;\\mu &lt;\\mu _0\\)</span>, the surface is unstable, while for all <span>\\(\\mu \\ge \\mu _1\\)</span>, the index is at most one.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09925-w.pdf","citationCount":"0","resultStr":"{\"title\":\"On the index of a free-boundary minimal surface in Riemannian Schwarzschild-AdS\",\"authors\":\"Justin Corvino,&nbsp;Elene Karangozishvili,&nbsp;Deniz Ozbay\",\"doi\":\"10.1007/s10455-023-09925-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the index of a certain non-compact free-boundary minimal surface with boundary on the rotationally symmetric minimal sphere in the Schwarzschild-AdS geometry with <span>\\\\(m&gt;0\\\\)</span>. As in the Schwarzschild case, we show that in dimensions <span>\\\\(n\\\\ge 4\\\\)</span>, the surface is stable, whereas in dimension three, the stability depends on the value of the mass <span>\\\\(m&gt;0\\\\)</span> and the cosmological constant <span>\\\\(\\\\Lambda &lt;0\\\\)</span> via the parameter <span>\\\\(\\\\mu :=m\\\\sqrt{-\\\\Lambda /3}\\\\)</span>. We show that while for <span>\\\\(\\\\mu \\\\ge \\\\tfrac{5}{27}\\\\)</span> the surface is stable, there exist positive numbers <span>\\\\(\\\\mu _0\\\\)</span> and <span>\\\\(\\\\mu _1\\\\)</span>, with <span>\\\\(\\\\mu _1&lt;\\\\tfrac{5}{27}\\\\)</span>, such that for <span>\\\\(0&lt;\\\\mu &lt;\\\\mu _0\\\\)</span>, the surface is unstable, while for all <span>\\\\(\\\\mu \\\\ge \\\\mu _1\\\\)</span>, the index is at most one.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09925-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09925-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09925-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Schwarzschild-AdS几何中,我们考虑了一个具有旋转对称极小球面上边界的非紧自由边界极小曲面的指数,其中\(m>;0\)。与Schwarzschild的情况一样,我们证明在维度\(n\ge4\)中,表面是稳定的,而在维度3中,稳定性取决于质量\(m>;0\)和宇宙学常数\(\Lambda<;0\。我们证明,虽然对于\(\mu\ge\tfrac{5}{27}\)表面是稳定的,但存在正数\(\mu _0 \)和\(\μ_1\),其中\(\mu _1<;\tfrac{5}{27}\),使得对于\(0<;\mu<;\ mu _0),表面是不稳定的,而对于所有\(\mu\ge\mu _1\)来说,索引至多为一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the index of a free-boundary minimal surface in Riemannian Schwarzschild-AdS

We consider the index of a certain non-compact free-boundary minimal surface with boundary on the rotationally symmetric minimal sphere in the Schwarzschild-AdS geometry with \(m>0\). As in the Schwarzschild case, we show that in dimensions \(n\ge 4\), the surface is stable, whereas in dimension three, the stability depends on the value of the mass \(m>0\) and the cosmological constant \(\Lambda <0\) via the parameter \(\mu :=m\sqrt{-\Lambda /3}\). We show that while for \(\mu \ge \tfrac{5}{27}\) the surface is stable, there exist positive numbers \(\mu _0\) and \(\mu _1\), with \(\mu _1<\tfrac{5}{27}\), such that for \(0<\mu <\mu _0\), the surface is unstable, while for all \(\mu \ge \mu _1\), the index is at most one.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信