George Thomas, Jobin Thomas, R. S. Devika, Anju Krishnan, Anju V. Mathew, Amrutha J. Nair
{"title":"新冠肺炎封锁对印度西南沿海城市地区环境空气质量的影响","authors":"George Thomas, Jobin Thomas, R. S. Devika, Anju Krishnan, Anju V. Mathew, Amrutha J. Nair","doi":"10.1007/s41810-023-00180-x","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of urban areas and population as well as associated development over recent decades have been a major factor controlling ambient air quality of the urban environment in Kerala (India). Being located at the southwestern fringe of the Indian peninsula, Kerala is one of the regions that has been significantly influenced by the activities in the Indian Ocean. The present study focuses on the effect of the COVID-19 lockdown (in 2021) on ambient air quality in the selected coastal metropolitan areas of Kerala. Although previous research studies reported improvement in ambient air quality in Kerala during the lockdown period, this study demonstrates the potential of onshore transport of air pollutants in controlling the air quality of coastal urban regions during the lockdown period. Data from the ambient air quality monitoring stations of the Kerala State Pollution Control Board in the urban areas of Thiruvananthapuram (TM), Kollam (KL), Kozhikode (KZ), and Kannur (KN) are used for the analysis. Temporal variation in the concentration of air pollutants during the pre-lockdown (PRLD), lockdown (LD), and post-lockdown (PTLD) periods (i.e., 1 March to 31 July) of 2021 is examined to assess the effect of lockdown measures on the National Air Quality Index (AQI). Results indicate a significant decline in the levels of air pollutants and subsequent improvement in air quality in the coastal urban areas. All the effect of lockdown measures has been evident in the AQI, an increase in the concentration of different pollutants including CO, SO<sub>2</sub>, and NH<sub>3</sub> during the LD period suggests contributions from multiple sources including onshore transport due to marine traffic and transboundary transport.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"7 3","pages":"303 - 314"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of COVID-19 Lockdown on Ambient Air Quality in the Southwest Coastal Urban Regions of India\",\"authors\":\"George Thomas, Jobin Thomas, R. S. Devika, Anju Krishnan, Anju V. Mathew, Amrutha J. Nair\",\"doi\":\"10.1007/s41810-023-00180-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid growth of urban areas and population as well as associated development over recent decades have been a major factor controlling ambient air quality of the urban environment in Kerala (India). Being located at the southwestern fringe of the Indian peninsula, Kerala is one of the regions that has been significantly influenced by the activities in the Indian Ocean. The present study focuses on the effect of the COVID-19 lockdown (in 2021) on ambient air quality in the selected coastal metropolitan areas of Kerala. Although previous research studies reported improvement in ambient air quality in Kerala during the lockdown period, this study demonstrates the potential of onshore transport of air pollutants in controlling the air quality of coastal urban regions during the lockdown period. Data from the ambient air quality monitoring stations of the Kerala State Pollution Control Board in the urban areas of Thiruvananthapuram (TM), Kollam (KL), Kozhikode (KZ), and Kannur (KN) are used for the analysis. Temporal variation in the concentration of air pollutants during the pre-lockdown (PRLD), lockdown (LD), and post-lockdown (PTLD) periods (i.e., 1 March to 31 July) of 2021 is examined to assess the effect of lockdown measures on the National Air Quality Index (AQI). Results indicate a significant decline in the levels of air pollutants and subsequent improvement in air quality in the coastal urban areas. All the effect of lockdown measures has been evident in the AQI, an increase in the concentration of different pollutants including CO, SO<sub>2</sub>, and NH<sub>3</sub> during the LD period suggests contributions from multiple sources including onshore transport due to marine traffic and transboundary transport.</p></div>\",\"PeriodicalId\":36991,\"journal\":{\"name\":\"Aerosol Science and Engineering\",\"volume\":\"7 3\",\"pages\":\"303 - 314\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41810-023-00180-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-023-00180-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of COVID-19 Lockdown on Ambient Air Quality in the Southwest Coastal Urban Regions of India
The rapid growth of urban areas and population as well as associated development over recent decades have been a major factor controlling ambient air quality of the urban environment in Kerala (India). Being located at the southwestern fringe of the Indian peninsula, Kerala is one of the regions that has been significantly influenced by the activities in the Indian Ocean. The present study focuses on the effect of the COVID-19 lockdown (in 2021) on ambient air quality in the selected coastal metropolitan areas of Kerala. Although previous research studies reported improvement in ambient air quality in Kerala during the lockdown period, this study demonstrates the potential of onshore transport of air pollutants in controlling the air quality of coastal urban regions during the lockdown period. Data from the ambient air quality monitoring stations of the Kerala State Pollution Control Board in the urban areas of Thiruvananthapuram (TM), Kollam (KL), Kozhikode (KZ), and Kannur (KN) are used for the analysis. Temporal variation in the concentration of air pollutants during the pre-lockdown (PRLD), lockdown (LD), and post-lockdown (PTLD) periods (i.e., 1 March to 31 July) of 2021 is examined to assess the effect of lockdown measures on the National Air Quality Index (AQI). Results indicate a significant decline in the levels of air pollutants and subsequent improvement in air quality in the coastal urban areas. All the effect of lockdown measures has been evident in the AQI, an increase in the concentration of different pollutants including CO, SO2, and NH3 during the LD period suggests contributions from multiple sources including onshore transport due to marine traffic and transboundary transport.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.