Zh. Wang, A. V. Vasil’ev, M. A. Grechkoseeva, A. Kh. Zhurtov
{"title":"有限群不可解性的一个判据及简单群直平方的识别","authors":"Zh. Wang, A. V. Vasil’ev, M. A. Grechkoseeva, A. Kh. Zhurtov","doi":"10.1007/s10469-023-09697-z","DOIUrl":null,"url":null,"abstract":"<div><div><p>The spectrum ω(G) of a finite group G is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group G, there are four different primes such that ω(G) contains all their pairwise products but not a product of any three of these numbers, then G is nonsolvable. Using this result, we show that for q ⩾ 8 and q ≠ 32, the direct square Sz(q) × Sz(q) of the simple exceptional Suzuki group Sz(q) is uniquely characterized by its spectrum in the class of finite groups, while for Sz(32) × Sz(32), there are exactly four finite groups with the same spectrum.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups\",\"authors\":\"Zh. Wang, A. V. Vasil’ev, M. A. Grechkoseeva, A. Kh. Zhurtov\",\"doi\":\"10.1007/s10469-023-09697-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>The spectrum ω(G) of a finite group G is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group G, there are four different primes such that ω(G) contains all their pairwise products but not a product of any three of these numbers, then G is nonsolvable. Using this result, we show that for q ⩾ 8 and q ≠ 32, the direct square Sz(q) × Sz(q) of the simple exceptional Suzuki group Sz(q) is uniquely characterized by its spectrum in the class of finite groups, while for Sz(32) × Sz(32), there are exactly four finite groups with the same spectrum.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-023-09697-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-023-09697-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups
The spectrum ω(G) of a finite group G is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group G, there are four different primes such that ω(G) contains all their pairwise products but not a product of any three of these numbers, then G is nonsolvable. Using this result, we show that for q ⩾ 8 and q ≠ 32, the direct square Sz(q) × Sz(q) of the simple exceptional Suzuki group Sz(q) is uniquely characterized by its spectrum in the class of finite groups, while for Sz(32) × Sz(32), there are exactly four finite groups with the same spectrum.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.