{"title":"退化复Hessian方程的连续解","authors":"Hichame Amal, Saïd Asserda, Manar Bouhssina","doi":"10.1007/s40306-023-00498-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<i>X</i>,<i>ω</i>) be an <i>n</i>-dimensional compact Kähler manifold and fix an integer <i>m</i> such that 1 ≤ <i>m</i> ≤ <i>n</i>. Let <i>μ</i> be a finite Borel measure on <i>X</i> satisfying the conditions <span>\\({\\mathscr{H}}_{m}(\\delta , A,\\omega )\\)</span>. We study degenerate complex Hessian equations of the form (<i>ω</i> + <i>d</i><i>d</i><sup><i>c</i></sup><i>φ</i>)<sup><i>m</i></sup> ∧ <i>ω</i><sup><i>n</i>−<i>m</i></sup> = <i>F</i>(<i>φ</i>,.)<i>d</i><i>μ</i>. Under some natural conditions on <i>F</i>, we prove that if <span>\\(0<\\delta <\\frac {m}{n-m}\\)</span>, then this equation has a unique continuous solution.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"48 2","pages":"371 - 386"},"PeriodicalIF":0.3000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40306-023-00498-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Continuous Solutions for Degenerate Complex Hessian Equation\",\"authors\":\"Hichame Amal, Saïd Asserda, Manar Bouhssina\",\"doi\":\"10.1007/s40306-023-00498-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let (<i>X</i>,<i>ω</i>) be an <i>n</i>-dimensional compact Kähler manifold and fix an integer <i>m</i> such that 1 ≤ <i>m</i> ≤ <i>n</i>. Let <i>μ</i> be a finite Borel measure on <i>X</i> satisfying the conditions <span>\\\\({\\\\mathscr{H}}_{m}(\\\\delta , A,\\\\omega )\\\\)</span>. We study degenerate complex Hessian equations of the form (<i>ω</i> + <i>d</i><i>d</i><sup><i>c</i></sup><i>φ</i>)<sup><i>m</i></sup> ∧ <i>ω</i><sup><i>n</i>−<i>m</i></sup> = <i>F</i>(<i>φ</i>,.)<i>d</i><i>μ</i>. Under some natural conditions on <i>F</i>, we prove that if <span>\\\\(0<\\\\delta <\\\\frac {m}{n-m}\\\\)</span>, then this equation has a unique continuous solution.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"48 2\",\"pages\":\"371 - 386\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40306-023-00498-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-023-00498-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-023-00498-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Continuous Solutions for Degenerate Complex Hessian Equation
Let (X,ω) be an n-dimensional compact Kähler manifold and fix an integer m such that 1 ≤ m ≤ n. Let μ be a finite Borel measure on X satisfying the conditions \({\mathscr{H}}_{m}(\delta , A,\omega )\). We study degenerate complex Hessian equations of the form (ω + ddcφ)m ∧ ωn−m = F(φ,.)dμ. Under some natural conditions on F, we prove that if \(0<\delta <\frac {m}{n-m}\), then this equation has a unique continuous solution.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.