具有有界导数的解析函数Banach空间上的满射等距

IF 0.5 Q3 MATHEMATICS
Takeshi Miura, Norio Niwa
{"title":"具有有界导数的解析函数Banach空间上的满射等距","authors":"Takeshi Miura,&nbsp;Norio Niwa","doi":"10.1007/s44146-023-00062-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H(\\mathbb D)\\)</span> be the linear space of all analytic functions on the open unit disc <span>\\(\\mathbb D\\)</span> and <span>\\(H^p(\\mathbb D)\\)</span> the Hardy space on <span>\\(\\mathbb D\\)</span>. The characterization of complex linear isometries on <span>\\(\\mathcal {S}^p=\\{ f\\in H(\\mathbb D):f'\\in H^p(\\mathbb D) \\}\\)</span> was given for <span>\\(1 \\le p &lt; \\infty \\)</span> by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on <span>\\(\\mathcal {S}^\\infty \\)</span>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"109 - 145"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00062-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Surjective isometries on a Banach space of analytic functions with bounded derivatives\",\"authors\":\"Takeshi Miura,&nbsp;Norio Niwa\",\"doi\":\"10.1007/s44146-023-00062-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H(\\\\mathbb D)\\\\)</span> be the linear space of all analytic functions on the open unit disc <span>\\\\(\\\\mathbb D\\\\)</span> and <span>\\\\(H^p(\\\\mathbb D)\\\\)</span> the Hardy space on <span>\\\\(\\\\mathbb D\\\\)</span>. The characterization of complex linear isometries on <span>\\\\(\\\\mathcal {S}^p=\\\\{ f\\\\in H(\\\\mathbb D):f'\\\\in H^p(\\\\mathbb D) \\\\}\\\\)</span> was given for <span>\\\\(1 \\\\le p &lt; \\\\infty \\\\)</span> by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on <span>\\\\(\\\\mathcal {S}^\\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"109 - 145\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00062-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00062-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00062-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(H(\mathbb D)\)是开单位圆盘上所有解析函数的线性空间\(\mathbb D\)和\(H^p(\mathbbD))是\(\math bb D\)上的Hardy空间。Novinger和Oberlin于1985年给出了\(1\le p<;\infty\)上的复线性等距的刻画。在这里,我们刻画\(\mathcal{S}^\infty\)上的满射等距,而不一定是线性等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surjective isometries on a Banach space of analytic functions with bounded derivatives

Let \(H(\mathbb D)\) be the linear space of all analytic functions on the open unit disc \(\mathbb D\) and \(H^p(\mathbb D)\) the Hardy space on \(\mathbb D\). The characterization of complex linear isometries on \(\mathcal {S}^p=\{ f\in H(\mathbb D):f'\in H^p(\mathbb D) \}\) was given for \(1 \le p < \infty \) by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on \(\mathcal {S}^\infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信