{"title":"具有有界导数的解析函数Banach空间上的满射等距","authors":"Takeshi Miura, Norio Niwa","doi":"10.1007/s44146-023-00062-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(H(\\mathbb D)\\)</span> be the linear space of all analytic functions on the open unit disc <span>\\(\\mathbb D\\)</span> and <span>\\(H^p(\\mathbb D)\\)</span> the Hardy space on <span>\\(\\mathbb D\\)</span>. The characterization of complex linear isometries on <span>\\(\\mathcal {S}^p=\\{ f\\in H(\\mathbb D):f'\\in H^p(\\mathbb D) \\}\\)</span> was given for <span>\\(1 \\le p < \\infty \\)</span> by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on <span>\\(\\mathcal {S}^\\infty \\)</span>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"109 - 145"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00062-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Surjective isometries on a Banach space of analytic functions with bounded derivatives\",\"authors\":\"Takeshi Miura, Norio Niwa\",\"doi\":\"10.1007/s44146-023-00062-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(H(\\\\mathbb D)\\\\)</span> be the linear space of all analytic functions on the open unit disc <span>\\\\(\\\\mathbb D\\\\)</span> and <span>\\\\(H^p(\\\\mathbb D)\\\\)</span> the Hardy space on <span>\\\\(\\\\mathbb D\\\\)</span>. The characterization of complex linear isometries on <span>\\\\(\\\\mathcal {S}^p=\\\\{ f\\\\in H(\\\\mathbb D):f'\\\\in H^p(\\\\mathbb D) \\\\}\\\\)</span> was given for <span>\\\\(1 \\\\le p < \\\\infty \\\\)</span> by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on <span>\\\\(\\\\mathcal {S}^\\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"109 - 145\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00062-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00062-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00062-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Surjective isometries on a Banach space of analytic functions with bounded derivatives
Let \(H(\mathbb D)\) be the linear space of all analytic functions on the open unit disc \(\mathbb D\) and \(H^p(\mathbb D)\) the Hardy space on \(\mathbb D\). The characterization of complex linear isometries on \(\mathcal {S}^p=\{ f\in H(\mathbb D):f'\in H^p(\mathbb D) \}\) was given for \(1 \le p < \infty \) by Novinger and Oberlin in 1985. Here, we characterize surjective, not necessarily linear, isometries on \(\mathcal {S}^\infty \).