{"title":"关于细长矩形格","authors":"George Grätzer","doi":"10.1007/s44146-023-00058-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>L</i> be a slim, planar, semimodular lattice (slim means that it does not contain an <span>\\({{\\textsf{M}}}_3\\)</span>-sublattice). We call the interval <span>\\(I = [o, i]\\)</span> of <i>L</i> <i>rectangular</i>, if there are complementary <span>\\(a, b \\in I\\)</span> such that <i>a</i> is to the left of <i>b</i>. We claim that a rectangular interval of a slim rectangular lattice is also a slim rectangular lattice. We will present some applications, including a recent result of G. Czédli. In a paper with E. Knapp about a dozen years ago, we introduced <i>natural diagrams</i> for slim rectangular lattices. Five years later, G. Czédli introduced <span>\\({\\mathcal {C}}_1\\)</span>-<i>diagrams</i>. We prove that they are the same.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"13 - 22"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00058-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On slim rectangular lattices\",\"authors\":\"George Grätzer\",\"doi\":\"10.1007/s44146-023-00058-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>L</i> be a slim, planar, semimodular lattice (slim means that it does not contain an <span>\\\\({{\\\\textsf{M}}}_3\\\\)</span>-sublattice). We call the interval <span>\\\\(I = [o, i]\\\\)</span> of <i>L</i> <i>rectangular</i>, if there are complementary <span>\\\\(a, b \\\\in I\\\\)</span> such that <i>a</i> is to the left of <i>b</i>. We claim that a rectangular interval of a slim rectangular lattice is also a slim rectangular lattice. We will present some applications, including a recent result of G. Czédli. In a paper with E. Knapp about a dozen years ago, we introduced <i>natural diagrams</i> for slim rectangular lattices. Five years later, G. Czédli introduced <span>\\\\({\\\\mathcal {C}}_1\\\\)</span>-<i>diagrams</i>. We prove that they are the same.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"13 - 22\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00058-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00058-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00058-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let L be a slim, planar, semimodular lattice (slim means that it does not contain an \({{\textsf{M}}}_3\)-sublattice). We call the interval \(I = [o, i]\) of Lrectangular, if there are complementary \(a, b \in I\) such that a is to the left of b. We claim that a rectangular interval of a slim rectangular lattice is also a slim rectangular lattice. We will present some applications, including a recent result of G. Czédli. In a paper with E. Knapp about a dozen years ago, we introduced natural diagrams for slim rectangular lattices. Five years later, G. Czédli introduced \({\mathcal {C}}_1\)-diagrams. We prove that they are the same.