有限富特征谓词演算之间的虚拟代数同构

IF 0.4 3区 数学 Q4 LOGIC
M. G. Peretyat’kin
{"title":"有限富特征谓词演算之间的虚拟代数同构","authors":"M. G. Peretyat’kin","doi":"10.1007/s10469-022-09666-y","DOIUrl":null,"url":null,"abstract":"<div><div><p>It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of algebraic type corresponding to the real practice of research in model theory.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"60 6","pages":"389 - 406"},"PeriodicalIF":0.4000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Algebraic Isomorphisms between Predicate Calculi of Finite Rich Signatures\",\"authors\":\"M. G. Peretyat’kin\",\"doi\":\"10.1007/s10469-022-09666-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of algebraic type corresponding to the real practice of research in model theory.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"60 6\",\"pages\":\"389 - 406\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-022-09666-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-022-09666-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

证明了有限富签名的每两个谓词演算都是代数虚拟同构的,即它们的某些笛卡尔扩张是代数同构的。作为一个重要的应用,指出对于任意两个有限富签名中的谓词演算,它们的Tarski–Lindenbaum代数之间存在可计算同构,这保留了与模型理论研究的实际实践相对应的代数类型的所有模型论性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Algebraic Isomorphisms between Predicate Calculi of Finite Rich Signatures

It is proved that every two predicate calculi of finite rich signatures are algebraically virtually isomorphic, i.e., some of their Cartesian extensions are algebraically isomorphic. As an important application, it is stated that for predicate calculi in any two finite rich signatures, there exists a computable isomorphism between their Tarski–Lindenbaum algebras which preserves all model-theoretic properties of algebraic type corresponding to the real practice of research in model theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信