N. Kh. Kasymov, A. S. Morozov, I. A. Khodzhamuratova
{"title":"次直不可分解代数的T1可分数","authors":"N. Kh. Kasymov, A. S. Morozov, I. A. Khodzhamuratova","doi":"10.1007/s10469-021-09651-x","DOIUrl":null,"url":null,"abstract":"<div><div><p>We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a <i>T</i><sub>1</sub>-separable nonnegative subdirectly indecomposable algebra with Artinian congruence lattice.</p></div></div>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":"60 4","pages":"263 - 278"},"PeriodicalIF":0.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"T1-Separable Numberings of Subdirectly Indecomposable Algebras\",\"authors\":\"N. Kh. Kasymov, A. S. Morozov, I. A. Khodzhamuratova\",\"doi\":\"10.1007/s10469-021-09651-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a <i>T</i><sub>1</sub>-separable nonnegative subdirectly indecomposable algebra with Artinian congruence lattice.</p></div></div>\",\"PeriodicalId\":7422,\"journal\":{\"name\":\"Algebra and Logic\",\"volume\":\"60 4\",\"pages\":\"263 - 278\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra and Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10469-021-09651-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-021-09651-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
T1-Separable Numberings of Subdirectly Indecomposable Algebras
We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a T1-separable nonnegative subdirectly indecomposable algebra with Artinian congruence lattice.
期刊介绍:
This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions.
Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences.
All articles are peer-reviewed.