单参数子群下双不变的\(\textrm{SL}(2,\mathbb{R})\times\\textrm{SL}

IF 0.6 3区 数学 Q3 MATHEMATICS
Vicente Cortés, Jeremias Ehlert, Alexander S. Haupt, David Lindemann
{"title":"单参数子群下双不变的\\(\\textrm{SL}(2,\\mathbb{R})\\times\\\\textrm{SL}","authors":"Vicente Cortés,&nbsp;Jeremias Ehlert,&nbsp;Alexander S. Haupt,&nbsp;David Lindemann","doi":"10.1007/s10455-023-09890-4","DOIUrl":null,"url":null,"abstract":"<div><p>We classify all left-invariant pseudo-Riemannian Einstein metrics on <span>\\(\\textrm{SL}(2,\\mathbb {R})\\times \\textrm{SL}(2,\\mathbb {R})\\)</span> that are bi-invariant under a one-parameter subgroup. We find that there are precisely two such metrics up to homothety, the Killing form and a nearly pseudo-Kähler metric.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09890-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Classification of left-invariant Einstein metrics on \\\\(\\\\textrm{SL}(2,\\\\mathbb {R})\\\\times \\\\textrm{SL}(2,\\\\mathbb {R})\\\\) that are bi-invariant under a one-parameter subgroup\",\"authors\":\"Vicente Cortés,&nbsp;Jeremias Ehlert,&nbsp;Alexander S. Haupt,&nbsp;David Lindemann\",\"doi\":\"10.1007/s10455-023-09890-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify all left-invariant pseudo-Riemannian Einstein metrics on <span>\\\\(\\\\textrm{SL}(2,\\\\mathbb {R})\\\\times \\\\textrm{SL}(2,\\\\mathbb {R})\\\\)</span> that are bi-invariant under a one-parameter subgroup. We find that there are precisely two such metrics up to homothety, the Killing form and a nearly pseudo-Kähler metric.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09890-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09890-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09890-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对\(\textrm{SL}(2,\mathbb{R})\times\textrm{SL}(2,/mathbb{{R})\)上的所有左不变伪黎曼-爱因斯坦度量进行了分类,这些度量在单参数子群下是双不变的。我们发现,正是有两个这样的度量,直到同伦论,Killing形式和一个几乎伪Kähler度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of left-invariant Einstein metrics on \(\textrm{SL}(2,\mathbb {R})\times \textrm{SL}(2,\mathbb {R})\) that are bi-invariant under a one-parameter subgroup

We classify all left-invariant pseudo-Riemannian Einstein metrics on \(\textrm{SL}(2,\mathbb {R})\times \textrm{SL}(2,\mathbb {R})\) that are bi-invariant under a one-parameter subgroup. We find that there are precisely two such metrics up to homothety, the Killing form and a nearly pseudo-Kähler metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信