{"title":"Hilbert空间算子的拟siaffine变换","authors":"Maria F. Gamal’, László Kérchy","doi":"10.1007/s44146-023-00057-y","DOIUrl":null,"url":null,"abstract":"<div><p>Ampliation quasisimilarity was applied as a tool in Foias and Pearcy (J Funct Anal 219:134–142, 2005) to reduce the hyperinvariant subspace problem to a particular class of operators. The seemingly weaker pluquasisimilarity relation was introduced in Bercovici et al. (Acta Sci Math Szeged 85:681–691, 2019) and studied also in Kérchy (Acta Sci Math Szeged 86:503–520, 2020). The problem whether these two relations are actually equivalent is addressed in the present paper. The following more general, related question is studied in details: under what conditions is the operator <i>A</i> a quasiaffine transform of <i>B</i>, whenever <i>A</i> can be injected into <i>B</i> and <i>A</i> can be also densely mapped into <i>B</i>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"147 - 165"},"PeriodicalIF":0.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00057-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasiaffine transforms of Hilbert space operators\",\"authors\":\"Maria F. Gamal’, László Kérchy\",\"doi\":\"10.1007/s44146-023-00057-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ampliation quasisimilarity was applied as a tool in Foias and Pearcy (J Funct Anal 219:134–142, 2005) to reduce the hyperinvariant subspace problem to a particular class of operators. The seemingly weaker pluquasisimilarity relation was introduced in Bercovici et al. (Acta Sci Math Szeged 85:681–691, 2019) and studied also in Kérchy (Acta Sci Math Szeged 86:503–520, 2020). The problem whether these two relations are actually equivalent is addressed in the present paper. The following more general, related question is studied in details: under what conditions is the operator <i>A</i> a quasiaffine transform of <i>B</i>, whenever <i>A</i> can be injected into <i>B</i> and <i>A</i> can be also densely mapped into <i>B</i>.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"89 1-2\",\"pages\":\"147 - 165\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00057-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00057-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00057-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ampliation quasisimilarity was applied as a tool in Foias and Pearcy (J Funct Anal 219:134–142, 2005) to reduce the hyperinvariant subspace problem to a particular class of operators. The seemingly weaker pluquasisimilarity relation was introduced in Bercovici et al. (Acta Sci Math Szeged 85:681–691, 2019) and studied also in Kérchy (Acta Sci Math Szeged 86:503–520, 2020). The problem whether these two relations are actually equivalent is addressed in the present paper. The following more general, related question is studied in details: under what conditions is the operator A a quasiaffine transform of B, whenever A can be injected into B and A can be also densely mapped into B.