关于Maxwell–Schrödinger方程的量子跳跃和吸引子

IF 0.5 Q3 MATHEMATICS
Alexander I. Komech
{"title":"关于Maxwell–Schrödinger方程的量子跳跃和吸引子","authors":"Alexander I. Komech","doi":"10.1007/s40316-021-00179-1","DOIUrl":null,"url":null,"abstract":"<div><p>Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schrödinger equations. We discuss possible dynamical interpretation of these postulates relying on a new general <i>mathematical conjecture</i> on global attractors of <i>G</i>-invariant nonlinear Hamiltonian partial differential equations with a Lie symmetry group <i>G</i>. This conjecture is inspired by the results on global attractors of nonlinear Hamiltonian PDEs obtained by the author together with his collaborators since 1990 for a list of model equations with three basic symmetry groups: the trivial group, the group of translations, and the unitary group <span>\\(\\mathbf {U}(1)\\)</span>. We sketch these results.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 1","pages":"139 - 159"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On quantum jumps and attractors of the Maxwell–Schrödinger equations\",\"authors\":\"Alexander I. Komech\",\"doi\":\"10.1007/s40316-021-00179-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schrödinger equations. We discuss possible dynamical interpretation of these postulates relying on a new general <i>mathematical conjecture</i> on global attractors of <i>G</i>-invariant nonlinear Hamiltonian partial differential equations with a Lie symmetry group <i>G</i>. This conjecture is inspired by the results on global attractors of nonlinear Hamiltonian PDEs obtained by the author together with his collaborators since 1990 for a list of model equations with three basic symmetry groups: the trivial group, the group of translations, and the unitary group <span>\\\\(\\\\mathbf {U}(1)\\\\)</span>. We sketch these results.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"46 1\",\"pages\":\"139 - 159\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00179-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00179-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们的目标是讨论量子力学基本公设(或“原理”)的数学解释问题:在半经典自洽Maxwell–Schrödinger方程的背景下,向量子定轨道的转换、波粒对偶和概率解释。我们讨论了这些公设的可能的动力学解释,这依赖于一个关于具有李对称群G的G不变非线性Hamiltonian偏微分方程的全局吸引子的新的一般数学猜想。这一猜想的灵感来自作者和他的合作者自1990年以来对具有三个基本对称群的模型方程组的列表所获得的关于非线性哈密顿偏微分方程的全局吸引子的结果:平凡群、平移群和酉群\(\mathbf{U}(1)\)。我们勾勒出这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On quantum jumps and attractors of the Maxwell–Schrödinger equations

Our goal is the discussion of the problem of mathematical interpretation of basic postulates (or “principles”) of Quantum Mechanics: transitions to quantum stationary orbits, the wave-particle duality, and the probabilistic interpretation, in the context of semiclassical self-consistent Maxwell–Schrödinger equations. We discuss possible dynamical interpretation of these postulates relying on a new general mathematical conjecture on global attractors of G-invariant nonlinear Hamiltonian partial differential equations with a Lie symmetry group G. This conjecture is inspired by the results on global attractors of nonlinear Hamiltonian PDEs obtained by the author together with his collaborators since 1990 for a list of model equations with three basic symmetry groups: the trivial group, the group of translations, and the unitary group \(\mathbf {U}(1)\). We sketch these results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信