{"title":"喜马拉雅-横断山区金盏花的比较系统地理揭示了不同的遗传结构","authors":"Qi-Yong Mu, Chih-Chieh Yu, Yan Wang, Ting-Shen Han, Hui Wang, Wen-Na Ding, Qiu-Yue Zhang, Shook Ling Low, Quan-Jing Zheng, Chuan Peng, Zheng-Yan Hu, Yao-Wu Xing","doi":"10.1007/s00035-021-00262-x","DOIUrl":null,"url":null,"abstract":"<div><p>The Himalaya–Hengduan Mountain (HHM) region consists of two global biodiversity hotspots characterized by a high degree of plant endemism. However, little is known about how these endemic species are formed and maintained in relation to the regional geomorphology of the past or current time. Thus, this study investigated the genetic structure of the herbaceous genus <i>Acanthocalyx</i> (Caprifoliaceae) endemic to the HHM to demonstrate if major geographic or ecological barriers in the HHM region have influenced its phylogeographic patterns. Our analyses revealed distinct genetic structures within <i>A. alba</i> and <i>A. nepalensis</i> and indicated that <i>A. delavayi</i> may have recently evolved from isolated peripheral populations of <i>A. nepalensis</i>. In particular, we not only confirmed a well-known genetic structure of alpine plants between the Himalayas and the Hengduan Mountains but also discovered a notable floristic boundary (bounded by 30° to 31°N latitude) within the Hengduan Mountains from <i>A. alba</i>. This study provides new insights into the dispersal and intraspecific genetic variation of <i>Acanthocalyx</i> and highlights the importance of geomorphological features for the diversification of HHM alpine flora.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00035-021-00262-x","citationCount":"2","resultStr":"{\"title\":\"Comparative phylogeography of Acanthocalyx (Caprifoliaceae) reveals distinct genetic structures in the Himalaya–Hengduan Mountains\",\"authors\":\"Qi-Yong Mu, Chih-Chieh Yu, Yan Wang, Ting-Shen Han, Hui Wang, Wen-Na Ding, Qiu-Yue Zhang, Shook Ling Low, Quan-Jing Zheng, Chuan Peng, Zheng-Yan Hu, Yao-Wu Xing\",\"doi\":\"10.1007/s00035-021-00262-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Himalaya–Hengduan Mountain (HHM) region consists of two global biodiversity hotspots characterized by a high degree of plant endemism. However, little is known about how these endemic species are formed and maintained in relation to the regional geomorphology of the past or current time. Thus, this study investigated the genetic structure of the herbaceous genus <i>Acanthocalyx</i> (Caprifoliaceae) endemic to the HHM to demonstrate if major geographic or ecological barriers in the HHM region have influenced its phylogeographic patterns. Our analyses revealed distinct genetic structures within <i>A. alba</i> and <i>A. nepalensis</i> and indicated that <i>A. delavayi</i> may have recently evolved from isolated peripheral populations of <i>A. nepalensis</i>. In particular, we not only confirmed a well-known genetic structure of alpine plants between the Himalayas and the Hengduan Mountains but also discovered a notable floristic boundary (bounded by 30° to 31°N latitude) within the Hengduan Mountains from <i>A. alba</i>. This study provides new insights into the dispersal and intraspecific genetic variation of <i>Acanthocalyx</i> and highlights the importance of geomorphological features for the diversification of HHM alpine flora.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00035-021-00262-x\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00035-021-00262-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00035-021-00262-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparative phylogeography of Acanthocalyx (Caprifoliaceae) reveals distinct genetic structures in the Himalaya–Hengduan Mountains
The Himalaya–Hengduan Mountain (HHM) region consists of two global biodiversity hotspots characterized by a high degree of plant endemism. However, little is known about how these endemic species are formed and maintained in relation to the regional geomorphology of the past or current time. Thus, this study investigated the genetic structure of the herbaceous genus Acanthocalyx (Caprifoliaceae) endemic to the HHM to demonstrate if major geographic or ecological barriers in the HHM region have influenced its phylogeographic patterns. Our analyses revealed distinct genetic structures within A. alba and A. nepalensis and indicated that A. delavayi may have recently evolved from isolated peripheral populations of A. nepalensis. In particular, we not only confirmed a well-known genetic structure of alpine plants between the Himalayas and the Hengduan Mountains but also discovered a notable floristic boundary (bounded by 30° to 31°N latitude) within the Hengduan Mountains from A. alba. This study provides new insights into the dispersal and intraspecific genetic variation of Acanthocalyx and highlights the importance of geomorphological features for the diversification of HHM alpine flora.