{"title":"具有四次边际稳定曲线的广义Swift–Hohenberg方程的局部化模式","authors":"David C Bentley;Alastair M Rucklidge","doi":"10.1093/imamat/hxab035","DOIUrl":null,"url":null,"abstract":"In some pattern-forming systems, for some parameter values, patterns form with two wavelengths, while for other parameter values, there is only one wavelength. The transition between these can be organized by a codimension-three point at which the marginal stability curve has a quartic minimum. We develop a model equation to explore this situation, based on the Swift–Hohenberg equation; the model contains, amongst other things, snaking branches of patterns of one wavelength localized in a background of patterns of another wavelength. In the small-amplitude limit, the amplitude equation for the model is a generalized Ginzburg–Landau equation with fourth-order spatial derivatives, which can take the form of a complex Swift–Hohenberg equation with real coefficients. Localized solutions in this amplitude equation help interpret the localized patterns in the model. This work extends recent efforts to investigate snaking behaviour in pattern-forming systems where two different stable non-trivial patterns exist at the same parameter values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localized patterns in a generalized Swift–Hohenberg equation with a quartic marginal stability curve\",\"authors\":\"David C Bentley;Alastair M Rucklidge\",\"doi\":\"10.1093/imamat/hxab035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some pattern-forming systems, for some parameter values, patterns form with two wavelengths, while for other parameter values, there is only one wavelength. The transition between these can be organized by a codimension-three point at which the marginal stability curve has a quartic minimum. We develop a model equation to explore this situation, based on the Swift–Hohenberg equation; the model contains, amongst other things, snaking branches of patterns of one wavelength localized in a background of patterns of another wavelength. In the small-amplitude limit, the amplitude equation for the model is a generalized Ginzburg–Landau equation with fourth-order spatial derivatives, which can take the form of a complex Swift–Hohenberg equation with real coefficients. Localized solutions in this amplitude equation help interpret the localized patterns in the model. This work extends recent efforts to investigate snaking behaviour in pattern-forming systems where two different stable non-trivial patterns exist at the same parameter values.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9619530/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619530/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Localized patterns in a generalized Swift–Hohenberg equation with a quartic marginal stability curve
In some pattern-forming systems, for some parameter values, patterns form with two wavelengths, while for other parameter values, there is only one wavelength. The transition between these can be organized by a codimension-three point at which the marginal stability curve has a quartic minimum. We develop a model equation to explore this situation, based on the Swift–Hohenberg equation; the model contains, amongst other things, snaking branches of patterns of one wavelength localized in a background of patterns of another wavelength. In the small-amplitude limit, the amplitude equation for the model is a generalized Ginzburg–Landau equation with fourth-order spatial derivatives, which can take the form of a complex Swift–Hohenberg equation with real coefficients. Localized solutions in this amplitude equation help interpret the localized patterns in the model. This work extends recent efforts to investigate snaking behaviour in pattern-forming systems where two different stable non-trivial patterns exist at the same parameter values.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.