基于单核功率门控和动态电压和频率缩放的边缘数据中心细粒度在线能量管理

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shoulu Hou;Wei Ni;Kailan Zhao;Bo Cheng;Shuai Zhao;Zhiguo Wan;Xiulei Liu;Shiping Chen
{"title":"基于单核功率门控和动态电压和频率缩放的边缘数据中心细粒度在线能量管理","authors":"Shoulu Hou;Wei Ni;Kailan Zhao;Bo Cheng;Shuai Zhao;Zhiguo Wan;Xiulei Liu;Shiping Chen","doi":"10.1109/TSUSC.2023.3250487","DOIUrl":null,"url":null,"abstract":"It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 3","pages":"522-536"},"PeriodicalIF":3.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Grained Online Energy Management of Edge Data Centers Using Per-Core Power Gating and Dynamic Voltage and Frequency Scaling\",\"authors\":\"Shoulu Hou;Wei Ni;Kailan Zhao;Bo Cheng;Shuai Zhao;Zhiguo Wan;Xiulei Liu;Shiping Chen\",\"doi\":\"10.1109/TSUSC.2023.3250487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"8 3\",\"pages\":\"522-536\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10056241/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10056241/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

最大限度地减少大规模、地理分布的边缘数据中心(EDC)的能耗是很重要的。虽然现代处理单元(PU)具有节能功能,如动态电压和频率缩放(DVFS)和每核功率门控(PCPG),但优化仍然很复杂,需要整体方法。本文提出了一种新的去中心化、三时间尺度的在线优化方法,使多核微数据中心(MDCs)能够在三个不同的时间尺度上优化其每个PU的功率状态、每个启用的PU的电压频率水平和卸载时间表。关键思想是,我们使用多时间尺度李雅普诺夫优化来解耦小时间尺度下的工作负载调度和结果交付与大时间尺度下PU配置之间的能量最小化。另一个重要方面是,我们应用原始分解来在中间时间尺度的每启用PU电压频率电平和大时间尺度的每个PU功率状态之间解耦PU配置。实验表明,与现有的基准相比,在我们考虑的轻负载情况下,在单独使用DVFS无法有效工作的情况下,所提出的方法将能效显著提高了4.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Online Energy Management of Edge Data Centers Using Per-Core Power Gating and Dynamic Voltage and Frequency Scaling
It is important to minimize the energy consumption of large-scale, geographically distributed edge data centers (EDCs). While modern processing units (PUs) have energy-saving features like Dynamic Voltage and Frequency Scaling (DVFS) and Per-Core Power Gating (PCPG), optimization is still complex and requires a holistic approach. This article presents a new decentralized, three-timescale, online optimization approach that enables multicore micro data centers (MDCs) to optimize their per-PU power states, per-enabled-PU voltage-frequency levels and offloading schedules at three different timescales. The key idea is that we employ multi-timescale Lyapunov optimization to decouple the energy minimization between workload scheduling and result delivery at a small timescale and PU configuration at large timescales. Another important aspect is that we apply the primal decomposition to decouple the PU configuration between a per-enabled-PU voltage-frequency level at an intermediate timescale and a per-PU power state at a large timescale. Experiments demonstrate that the proposed approach improves energy efficiency significantly by up to 4.5 times in our considered lightly loaded situations where DVFS alone does not work effectively, compared to existing benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信