mod2 Steenrod代数中Adem关系的协链水平证明

Pub Date : 2021-08-19 DOI:10.1007/s40062-021-00287-3
Greg Brumfiel, Anibal Medina-Mardones, John Morgan
{"title":"mod2 Steenrod代数中Adem关系的协链水平证明","authors":"Greg Brumfiel,&nbsp;Anibal Medina-Mardones,&nbsp;John Morgan","doi":"10.1007/s40062-021-00287-3","DOIUrl":null,"url":null,"abstract":"<div><p>In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-<i>i</i> products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod <i>p</i> operations for all primes <i>p</i>. Steenrod’s student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrod’s original cochain definition of the Square operations.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00287-3","citationCount":"9","resultStr":"{\"title\":\"A cochain level proof of Adem relations in the mod 2 Steenrod algebra\",\"authors\":\"Greg Brumfiel,&nbsp;Anibal Medina-Mardones,&nbsp;John Morgan\",\"doi\":\"10.1007/s40062-021-00287-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-<i>i</i> products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod <i>p</i> operations for all primes <i>p</i>. Steenrod’s student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrod’s original cochain definition of the Square operations.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-021-00287-3\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-021-00287-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00287-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

1947年,N.E. Steenrod使用环的cup-i积的显式协链公式定义了Steenrod平方,它是模2上同运算。他后来用更一般的同调术语重新构造了这个构造,使用群同调和无环模型方法,而不是显式的协链公式,来定义所有素数p的模p运算。Steenrod的学生J. Adem应用同调的观点来证明由Steenrod运算生成的上同调运算代数中的基本关系,称为Adem关系。本文在协链层面上给出了mod2adem关系的证明。具体来说,在给定一个模2环的情况下,我们利用Steenrod对平方运算的原始协链定义,得到了显式协链公式,其协边界是应用于该环的Steenrod平方组合之间的Adem关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A cochain level proof of Adem relations in the mod 2 Steenrod algebra

In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-i products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod p operations for all primes p. Steenrod’s student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrod’s original cochain definition of the Square operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信