非线性控制黑盒策略的稳定性证明

Tongxin Li;Ruixiao Yang;Guannan Qu;Yiheng Lin;Adam Wierman;Steven H. Low
{"title":"非线性控制黑盒策略的稳定性证明","authors":"Tongxin Li;Ruixiao Yang;Guannan Qu;Yiheng Lin;Adam Wierman;Steven H. Low","doi":"10.1109/OJCSYS.2023.3241486","DOIUrl":null,"url":null,"abstract":"Machine-learned black-box policies are ubiquitous for nonlinear control problems. Meanwhile, crude model information is often available for these problems from, e.g., linear approximations of nonlinear dynamics. We study the problem of certifying a black-box control policy with stability using model-based advice for nonlinear control on a single trajectory. We first show a general negative result that a naive convex combination of a black-box policy and a linear model-based policy can lead to instability, even if the two policies are both stabilizing. We then propose an \n<italic>adaptive <inline-formula><tex-math>$\\lambda$</tex-math></inline-formula>-confident policy</i>\n, with a coefficient \n<inline-formula><tex-math>$\\lambda$</tex-math></inline-formula>\n indicating the confidence in a black-box policy, and prove its stability. With bounded nonlinearity, in addition, we show that the adaptive \n<inline-formula><tex-math>$\\lambda$</tex-math></inline-formula>\n-confident policy achieves a bounded competitive ratio when a black-box policy is near-optimal. Finally, we propose an online learning approach to implement the adaptive \n<inline-formula><tex-math>$\\lambda$</tex-math></inline-formula>\n-confident policy and verify its efficacy in case studies about the Cart-Pole problem and a real-world electric vehicle (EV) charging problem with covariate shift due to COVID-19.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"49-62"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10034859.pdf","citationCount":"4","resultStr":"{\"title\":\"Certifying Black-Box Policies With Stability for Nonlinear Control\",\"authors\":\"Tongxin Li;Ruixiao Yang;Guannan Qu;Yiheng Lin;Adam Wierman;Steven H. Low\",\"doi\":\"10.1109/OJCSYS.2023.3241486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine-learned black-box policies are ubiquitous for nonlinear control problems. Meanwhile, crude model information is often available for these problems from, e.g., linear approximations of nonlinear dynamics. We study the problem of certifying a black-box control policy with stability using model-based advice for nonlinear control on a single trajectory. We first show a general negative result that a naive convex combination of a black-box policy and a linear model-based policy can lead to instability, even if the two policies are both stabilizing. We then propose an \\n<italic>adaptive <inline-formula><tex-math>$\\\\lambda$</tex-math></inline-formula>-confident policy</i>\\n, with a coefficient \\n<inline-formula><tex-math>$\\\\lambda$</tex-math></inline-formula>\\n indicating the confidence in a black-box policy, and prove its stability. With bounded nonlinearity, in addition, we show that the adaptive \\n<inline-formula><tex-math>$\\\\lambda$</tex-math></inline-formula>\\n-confident policy achieves a bounded competitive ratio when a black-box policy is near-optimal. Finally, we propose an online learning approach to implement the adaptive \\n<inline-formula><tex-math>$\\\\lambda$</tex-math></inline-formula>\\n-confident policy and verify its efficacy in case studies about the Cart-Pole problem and a real-world electric vehicle (EV) charging problem with covariate shift due to COVID-19.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"2 \",\"pages\":\"49-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9973428/10034859.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10034859/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10034859/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习的黑匣子策略在非线性控制问题中普遍存在。同时,这些问题通常可以从非线性动力学的线性近似中获得粗略的模型信息。我们研究了在单轨迹上使用基于模型的非线性控制建议来证明具有稳定性的黑箱控制策略的问题。我们首先给出了一个普遍的否定结果,即黑箱策略和基于线性模型的策略的天真凸组合可能导致不稳定,即使这两个策略都是稳定的。然后,我们提出了一个自适应的$\lambda$置信策略,系数$\lambda$表示黑盒策略中的置信度,并证明了它的稳定性。此外,在有界非线性的情况下,我们证明了当黑盒策略接近最优时,自适应$\lambda$置信策略实现了有界竞争比。最后,我们提出了一种在线学习方法来实现自适应$\lambda$-置信策略,并在关于Cart-Pole问题和现实世界电动汽车(EV)充电问题的案例研究中验证其有效性,该问题因新冠肺炎而发生协变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certifying Black-Box Policies With Stability for Nonlinear Control
Machine-learned black-box policies are ubiquitous for nonlinear control problems. Meanwhile, crude model information is often available for these problems from, e.g., linear approximations of nonlinear dynamics. We study the problem of certifying a black-box control policy with stability using model-based advice for nonlinear control on a single trajectory. We first show a general negative result that a naive convex combination of a black-box policy and a linear model-based policy can lead to instability, even if the two policies are both stabilizing. We then propose an adaptive $\lambda$-confident policy , with a coefficient $\lambda$ indicating the confidence in a black-box policy, and prove its stability. With bounded nonlinearity, in addition, we show that the adaptive $\lambda$ -confident policy achieves a bounded competitive ratio when a black-box policy is near-optimal. Finally, we propose an online learning approach to implement the adaptive $\lambda$ -confident policy and verify its efficacy in case studies about the Cart-Pole problem and a real-world electric vehicle (EV) charging problem with covariate shift due to COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信