Voevodsky的动机k理论谱的乘法k理论模型

Pub Date : 2018-11-28 DOI:10.1007/s40062-018-0227-1
Youngsoo Kim
{"title":"Voevodsky的动机k理论谱的乘法k理论模型","authors":"Youngsoo Kim","doi":"10.1007/s40062-018-0227-1","DOIUrl":null,"url":null,"abstract":"<p>Voevodsky defined a motivic spectrum representing algebraic <i>K</i>-theory, and Panin, Pimenov, and R?ndigs described its ring structure up to homotopy. We construct a motivic symmetric spectrum with a strict ring structure. Then we show that these spectra are stably equivalent and that their ring structures are compatible up to homotopy.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0227-1","citationCount":"0","resultStr":"{\"title\":\"A multiplicative K-theoretic model of Voevodsky’s motivic K-theory spectrum\",\"authors\":\"Youngsoo Kim\",\"doi\":\"10.1007/s40062-018-0227-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Voevodsky defined a motivic spectrum representing algebraic <i>K</i>-theory, and Panin, Pimenov, and R?ndigs described its ring structure up to homotopy. We construct a motivic symmetric spectrum with a strict ring structure. Then we show that these spectra are stably equivalent and that their ring structures are compatible up to homotopy.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0227-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0227-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0227-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Voevodsky定义了一个表示代数k理论的动力谱,Panin、Pimenov和R?Ndigs描述了它的环结构直至同伦。构造了一个具有严格环结构的动力对称谱。然后我们证明了这些谱是稳定等效的,并且它们的环结构是相容的,直至同伦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A multiplicative K-theoretic model of Voevodsky’s motivic K-theory spectrum

Voevodsky defined a motivic spectrum representing algebraic K-theory, and Panin, Pimenov, and R?ndigs described its ring structure up to homotopy. We construct a motivic symmetric spectrum with a strict ring structure. Then we show that these spectra are stably equivalent and that their ring structures are compatible up to homotopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信