耗散深度神经动力学系统

Ján Drgoňa;Aaron Tuor;Soumya Vasisht;Draguna Vrabie
{"title":"耗散深度神经动力学系统","authors":"Ján Drgoňa;Aaron Tuor;Soumya Vasisht;Draguna Vrabie","doi":"10.1109/OJCSYS.2022.3186838","DOIUrl":null,"url":null,"abstract":"In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic and design methods. This allows us to “crack open the black box” of the neural dynamical system’s behavior by evaluating their dissipativity, and estimating their stationary points and state-space partitioning. We relate the norms of these local linear operators to the energy stored in the dissipative system with supply rates represented by their aggregate bias terms. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"100-112"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09809789.pdf","citationCount":"4","resultStr":"{\"title\":\"Dissipative Deep Neural Dynamical Systems\",\"authors\":\"Ján Drgoňa;Aaron Tuor;Soumya Vasisht;Draguna Vrabie\",\"doi\":\"10.1109/OJCSYS.2022.3186838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic and design methods. This allows us to “crack open the black box” of the neural dynamical system’s behavior by evaluating their dissipativity, and estimating their stationary points and state-space partitioning. We relate the norms of these local linear operators to the energy stored in the dissipative system with supply rates represented by their aggregate bias terms. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"1 \",\"pages\":\"100-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9683993/09809789.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9809789/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9809789/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了由深度神经网络参数化的离散时间动力系统的耗散性和局部渐近稳定性的充分条件。我们利用神经网络作为逐点仿射映射的表示,从而暴露其局部线性算子,并使其可用于经典的系统分析和设计方法。这使我们能够通过评估神经动力系统的耗散性、估计其驻点和状态空间划分来“打开”神经动力系统行为的黑匣子。我们将这些局部线性算子的范数与耗散系统中存储的能量联系起来,耗散系统的供应率由它们的总偏差项表示。根据经验,我们分析了这些局部线性算子的动力学行为和特征值谱的方差,这些算子具有不同的权重因子分解、激活函数、偏差项和深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative Deep Neural Dynamical Systems
In this paper, we provide sufficient conditions for dissipativity and local asymptotic stability of discrete-time dynamical systems parametrized by deep neural networks. We leverage the representation of neural networks as pointwise affine maps, thus exposing their local linear operators and making them accessible to classical system analytic and design methods. This allows us to “crack open the black box” of the neural dynamical system’s behavior by evaluating their dissipativity, and estimating their stationary points and state-space partitioning. We relate the norms of these local linear operators to the energy stored in the dissipative system with supply rates represented by their aggregate bias terms. Empirically, we analyze the variance in dynamical behavior and eigenvalue spectra of these local linear operators with varying weight factorizations, activation functions, bias terms, and depths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信