通过张量分解学习深度卷积神经网络

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Samet Oymak;Mahdi Soltanolkotabi
{"title":"通过张量分解学习深度卷积神经网络","authors":"Samet Oymak;Mahdi Soltanolkotabi","doi":"10.1093/imaiai/iaaa042","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed deep tensor decomposition (DeepTD) is based on a low-rank tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is sample efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 3","pages":"1031-1071"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa042","citationCount":"4","resultStr":"{\"title\":\"Learning a deep convolutional neural network via tensor decomposition\",\"authors\":\"Samet Oymak;Mahdi Soltanolkotabi\",\"doi\":\"10.1093/imaiai/iaaa042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed deep tensor decomposition (DeepTD) is based on a low-rank tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is sample efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"10 3\",\"pages\":\"1031-1071\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa042\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9579226/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9579226/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们研究了深度卷积神经网络的权值学习问题。我们考虑一个网络,其中卷积是在非重叠的补丁上进行的。我们开发了一种算法,用于从训练数据中同时学习所有内核。我们称之为深度张量分解(DeepTD)的方法是基于低秩张量分解。我们在训练数据的可实现模型下从理论上研究了DeepTD,其中输入是从高斯分布中i.i.d.选择的,并且标签是根据种植的卷积核生成的。我们证明了DeepTD是样本有效的,并且只要样本大小超过网络中卷积权重的总数,DeepTD就可以证明有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a deep convolutional neural network via tensor decomposition
In this paper, we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed deep tensor decomposition (DeepTD) is based on a low-rank tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is sample efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信