{"title":"非均匀尘埃宇宙学中过去零锥的平均问题","authors":"Thomas Buchert, Henk van Elst, Asta Heinesen","doi":"10.1007/s10714-022-03051-x","DOIUrl":null,"url":null,"abstract":"<div><p>Cosmological models typically neglect the complicated nature of the spacetime mani-fold at small scales in order to hypothesize idealized general relativistic solutions for describing the average dynamics of the Universe. Although these solutions are remarkably successful in accounting for data, they introduce a number of puzzles in cosmology, and their foundational assumptions are therefore important to test. In this paper, we go beyond the usual assumptions in cosmology and propose a formalism for averaging the local general relativistic spacetime on an observer’s past null cone: we formulate average properties of light fronts as they propagate from a cosmological emitter to an observer. The energy-momentum tensor is composed of an irrotational dust source and a cosmological constant—the same components as in the <span>\\(\\varLambda \\)</span>CDM model for late cosmic times—but the metric solution is not a priori constrained to be locally homogeneous or isotropic. This generally makes the large-scale dynamics depart from that of a simple Friedmann–Lemaître–Robertson–Walker solution through ‘backreaction’ effects. Our formalism quantifies such departures through a fully covariant system of area-averaged equations on the light fronts propagating towards an observer, which can be directly applied to analytical and numerical investigations of cosmic observables. For this purpose, we formulate light front averages of observable quantities, including the effective angular diameter distance and the cosmological redshift drift and we also discuss the backreaction effects for these observables.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-022-03051-x.pdf","citationCount":"10","resultStr":"{\"title\":\"The averaging problem on the past null cone in inhomogeneous dust cosmologies\",\"authors\":\"Thomas Buchert, Henk van Elst, Asta Heinesen\",\"doi\":\"10.1007/s10714-022-03051-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cosmological models typically neglect the complicated nature of the spacetime mani-fold at small scales in order to hypothesize idealized general relativistic solutions for describing the average dynamics of the Universe. Although these solutions are remarkably successful in accounting for data, they introduce a number of puzzles in cosmology, and their foundational assumptions are therefore important to test. In this paper, we go beyond the usual assumptions in cosmology and propose a formalism for averaging the local general relativistic spacetime on an observer’s past null cone: we formulate average properties of light fronts as they propagate from a cosmological emitter to an observer. The energy-momentum tensor is composed of an irrotational dust source and a cosmological constant—the same components as in the <span>\\\\(\\\\varLambda \\\\)</span>CDM model for late cosmic times—but the metric solution is not a priori constrained to be locally homogeneous or isotropic. This generally makes the large-scale dynamics depart from that of a simple Friedmann–Lemaître–Robertson–Walker solution through ‘backreaction’ effects. Our formalism quantifies such departures through a fully covariant system of area-averaged equations on the light fronts propagating towards an observer, which can be directly applied to analytical and numerical investigations of cosmic observables. For this purpose, we formulate light front averages of observable quantities, including the effective angular diameter distance and the cosmological redshift drift and we also discuss the backreaction effects for these observables.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-022-03051-x.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-022-03051-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-022-03051-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The averaging problem on the past null cone in inhomogeneous dust cosmologies
Cosmological models typically neglect the complicated nature of the spacetime mani-fold at small scales in order to hypothesize idealized general relativistic solutions for describing the average dynamics of the Universe. Although these solutions are remarkably successful in accounting for data, they introduce a number of puzzles in cosmology, and their foundational assumptions are therefore important to test. In this paper, we go beyond the usual assumptions in cosmology and propose a formalism for averaging the local general relativistic spacetime on an observer’s past null cone: we formulate average properties of light fronts as they propagate from a cosmological emitter to an observer. The energy-momentum tensor is composed of an irrotational dust source and a cosmological constant—the same components as in the \(\varLambda \)CDM model for late cosmic times—but the metric solution is not a priori constrained to be locally homogeneous or isotropic. This generally makes the large-scale dynamics depart from that of a simple Friedmann–Lemaître–Robertson–Walker solution through ‘backreaction’ effects. Our formalism quantifies such departures through a fully covariant system of area-averaged equations on the light fronts propagating towards an observer, which can be directly applied to analytical and numerical investigations of cosmic observables. For this purpose, we formulate light front averages of observable quantities, including the effective angular diameter distance and the cosmological redshift drift and we also discuss the backreaction effects for these observables.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.