Stahel–Donoho均值中值对对抗性腐败和重尾数据的稳健性

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Jules Depersin;Guillaume Lecué
{"title":"Stahel–Donoho均值中值对对抗性腐败和重尾数据的稳健性","authors":"Jules Depersin;Guillaume Lecué","doi":"10.1093/imaiai/iaac026","DOIUrl":null,"url":null,"abstract":"We consider median of means (MOM) versions of the Stahel–Donoho outlyingness (SDO) [23, 66] and of the Median Absolute Deviation (MAD) [30] functions to construct subgaussian estimators of a mean vector under adversarial contamination and heavy-tailed data. We develop a single analysis of the MOM version of the SDO which covers all cases ranging from the Gaussian case to the \n<tex>$L_2$</tex>\n case. It is based on isomorphic and almost isometric properties of the MOM versions of SDO and MAD. This analysis also covers cases where the mean does not even exist but a location parameter does; in those cases we still recover the same subgaussian rates and the same price for adversarial contamination even though there is not even a first moment. These properties are achieved by the classical SDO median and are therefore the first non-asymptotic statistical bounds on the Stahel–Donoho median complementing the \n<tex>$\\sqrt{n}$</tex>\n-consistency [58] and asymptotic normality [74] of the Stahel–Donoho estimators. We also show that the MOM version of MAD can be used to construct an estimator of the covariance matrix only under the existence of a second moment or of a scatter matrix if a second moment does not exist.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"12 2","pages":"814-850"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the robustness to adversarial corruption and to heavy-tailed data of the Stahel–Donoho median of means\",\"authors\":\"Jules Depersin;Guillaume Lecué\",\"doi\":\"10.1093/imaiai/iaac026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider median of means (MOM) versions of the Stahel–Donoho outlyingness (SDO) [23, 66] and of the Median Absolute Deviation (MAD) [30] functions to construct subgaussian estimators of a mean vector under adversarial contamination and heavy-tailed data. We develop a single analysis of the MOM version of the SDO which covers all cases ranging from the Gaussian case to the \\n<tex>$L_2$</tex>\\n case. It is based on isomorphic and almost isometric properties of the MOM versions of SDO and MAD. This analysis also covers cases where the mean does not even exist but a location parameter does; in those cases we still recover the same subgaussian rates and the same price for adversarial contamination even though there is not even a first moment. These properties are achieved by the classical SDO median and are therefore the first non-asymptotic statistical bounds on the Stahel–Donoho median complementing the \\n<tex>$\\\\sqrt{n}$</tex>\\n-consistency [58] and asymptotic normality [74] of the Stahel–Donoho estimators. We also show that the MOM version of MAD can be used to construct an estimator of the covariance matrix only under the existence of a second moment or of a scatter matrix if a second moment does not exist.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"12 2\",\"pages\":\"814-850\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10058610/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10058610/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Stahel–Donoho寿命(SDO)[23,66]和中值绝对偏差(MAD)[30]函数的均值中值(MOM)版本,以在对抗性污染和重尾数据下构建均值向量的亚高斯估计量。我们开发了SDO的MOM版本的单一分析,它涵盖了从高斯情况到$L_2$情况的所有情况。它基于SDO和MAD的MOM版本的同构和几乎等距性质。该分析还涵盖了平均值甚至不存在,但位置参数存在的情况;在这些情况下,我们仍然可以恢复相同的亚高斯速率和相同的对抗性污染价格,即使没有第一时间。这些性质是由经典SDO中值实现的,因此是Stahel–Donoho中值上的第一个非渐近统计界,补充了Stahel-Donoho估计量的$\sqrt{n}$-一致性[58]和渐近正态性[74]。我们还证明了只有在存在二阶矩的情况下,MAD的MOM版本才能用于构造协方差矩阵的估计器,或者如果不存在二阶力矩,则可以用于构造散射矩阵的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the robustness to adversarial corruption and to heavy-tailed data of the Stahel–Donoho median of means
We consider median of means (MOM) versions of the Stahel–Donoho outlyingness (SDO) [23, 66] and of the Median Absolute Deviation (MAD) [30] functions to construct subgaussian estimators of a mean vector under adversarial contamination and heavy-tailed data. We develop a single analysis of the MOM version of the SDO which covers all cases ranging from the Gaussian case to the $L_2$ case. It is based on isomorphic and almost isometric properties of the MOM versions of SDO and MAD. This analysis also covers cases where the mean does not even exist but a location parameter does; in those cases we still recover the same subgaussian rates and the same price for adversarial contamination even though there is not even a first moment. These properties are achieved by the classical SDO median and are therefore the first non-asymptotic statistical bounds on the Stahel–Donoho median complementing the $\sqrt{n}$ -consistency [58] and asymptotic normality [74] of the Stahel–Donoho estimators. We also show that the MOM version of MAD can be used to construct an estimator of the covariance matrix only under the existence of a second moment or of a scatter matrix if a second moment does not exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信