关于黎曼流形上的零阶随机Hessian估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianyu Wang
{"title":"关于黎曼流形上的零阶随机Hessian估计","authors":"Tianyu Wang","doi":"10.1093/imaiai/iaac027","DOIUrl":null,"url":null,"abstract":"We study Hessian estimators for functions defined over an \n<tex>$n$</tex>\n-dimensional complete analytic Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using \n<tex>$O (1)$</tex>\n function evaluations. We show that, for an analytic real-valued function \n<tex>$f$</tex>\n, our estimator achieves a bias bound of order \n<tex>$ O ( \\gamma \\delta ^2 ) $</tex>\n, where \n<tex>$ \\gamma $</tex>\n depends on both the Levi–Civita connection and function \n<tex>$f$</tex>\n, and \n<tex>$\\delta $</tex>\n is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sharp stochastic zeroth-order Hessian estimators over Riemannian manifolds\",\"authors\":\"Tianyu Wang\",\"doi\":\"10.1093/imaiai/iaac027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hessian estimators for functions defined over an \\n<tex>$n$</tex>\\n-dimensional complete analytic Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using \\n<tex>$O (1)$</tex>\\n function evaluations. We show that, for an analytic real-valued function \\n<tex>$f$</tex>\\n, our estimator achieves a bias bound of order \\n<tex>$ O ( \\\\gamma \\\\delta ^2 ) $</tex>\\n, where \\n<tex>$ \\\\gamma $</tex>\\n depends on both the Levi–Civita connection and function \\n<tex>$f$</tex>\\n, and \\n<tex>$\\\\delta $</tex>\\n is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10058611/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10058611/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在$n$-维完全解析黎曼流形上定义的函数的Hessian估计。我们使用$O(1)$函数评估引入了新的随机零阶Hessian估计量。我们证明,对于分析实值函数$f$,我们的估计器实现了$O(\gamma\delta^2)$阶的偏差界,其中$\gamma$依赖于Levi–Civita连接和函数$f$$$$\delta$是有限差分步长。据我们所知,我们的结果为Hessian估计量提供了第一个偏差界,该估计量明确地依赖于底层黎曼流形的几何。我们还研究了基于Hessian估计量的下游计算。经验评估证明了我们方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On sharp stochastic zeroth-order Hessian estimators over Riemannian manifolds
We study Hessian estimators for functions defined over an $n$ -dimensional complete analytic Riemannian manifold. We introduce new stochastic zeroth-order Hessian estimators using $O (1)$ function evaluations. We show that, for an analytic real-valued function $f$ , our estimator achieves a bias bound of order $ O ( \gamma \delta ^2 ) $ , where $ \gamma $ depends on both the Levi–Civita connection and function $f$ , and $\delta $ is the finite difference step size. To the best of our knowledge, our results provide the first bias bound for Hessian estimators that explicitly depends on the geometry of the underlying Riemannian manifold. We also study downstream computations based on our Hessian estimators. The supremacy of our method is evidenced by empirical evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信