{"title":"基于早期停止镜像下降的噪声稀疏相位检索的近似极小极大最优速率","authors":"Fan Wu;Patrick Rebeschini","doi":"10.1093/imaiai/iaac024","DOIUrl":null,"url":null,"abstract":"This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a \n<tex>$k$</tex>\n-sparse signal \n<tex>$\\textbf{x}^\\star \\in{\\mathbb{R}}^n$</tex>\n from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hypentropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order \n<tex>$k^2$</tex>\n (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of \n<tex>$\\|\\textbf{x}^\\star \\|_2/\\sqrt{k}$</tex>\n. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"12 2","pages":"633-713"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016800/10058586/10058608.pdf","citationCount":"0","resultStr":"{\"title\":\"Nearly minimax-optimal rates for noisy sparse phase retrieval via early-stopped mirror descent\",\"authors\":\"Fan Wu;Patrick Rebeschini\",\"doi\":\"10.1093/imaiai/iaac024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a \\n<tex>$k$</tex>\\n-sparse signal \\n<tex>$\\\\textbf{x}^\\\\star \\\\in{\\\\mathbb{R}}^n$</tex>\\n from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hypentropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order \\n<tex>$k^2$</tex>\\n (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of \\n<tex>$\\\\|\\\\textbf{x}^\\\\star \\\\|_2/\\\\sqrt{k}$</tex>\\n. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"12 2\",\"pages\":\"633-713\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8016800/10058586/10058608.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10058608/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10058608/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nearly minimax-optimal rates for noisy sparse phase retrieval via early-stopped mirror descent
This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a
$k$
-sparse signal
$\textbf{x}^\star \in{\mathbb{R}}^n$
from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hypentropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order
$k^2$
(modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of
$\|\textbf{x}^\star \|_2/\sqrt{k}$
. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.