无分布条件预测推理的极限

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Rina Foygel Barber;Emmanuel J Candès;Aaditya Ramdas;Ryan J Tibshirani
{"title":"无分布条件预测推理的极限","authors":"Rina Foygel Barber;Emmanuel J Candès;Aaditya Ramdas;Ryan J Tibshirani","doi":"10.1093/imaiai/iaaa017","DOIUrl":null,"url":null,"abstract":"We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 1","pages":"455-482"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa017","citationCount":"162","resultStr":"{\"title\":\"The limits of distribution-free conditional predictive inference\",\"authors\":\"Rina Foygel Barber;Emmanuel J Candès;Aaditya Ramdas;Ryan J Tibshirani\",\"doi\":\"10.1093/imaiai/iaaa017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"10 1\",\"pages\":\"455-482\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa017\",\"citationCount\":\"162\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514688/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514688/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 162

摘要

我们考虑了无分布预测推理的问题,目的是产生有条件而非边际的预测覆盖保证。现有的方法,如保角预测,提供了边际覆盖保证,其中预测覆盖在所有可能的测试点上平均保持,但这对于许多实际应用来说是不够的,在这些应用中,我们希望知道我们的预测对给定的个体有效,而不仅仅是对群体的平均有效。另一方面,如果不对基本分布强加假设,精确的条件推理保证是不可能的。在这项工作中,我们的目的是探索这两者之间的空间,并研究什么类型的条件覆盖属性的放松将缓解边际覆盖担保的一些实际问题,同时仍然可以在无分布的环境中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The limits of distribution-free conditional predictive inference
We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信