{"title":"的灵敏度ℓ1参数选择的最小化","authors":"Aaron Berk;Yaniv Plan;Özgür Yilmaz","doi":"10.1093/imaiai/iaaa014","DOIUrl":null,"url":null,"abstract":"The use of generalized Lasso is a common technique for recovery of structured high-dimensional signals. There are three common formulations of generalized Lasso; each program has a governing parameter whose optimal value depends on properties of the data. At this optimal value, compressed sensing theory explains why Lasso programs recover structured high-dimensional signals with minimax order-optimal error. Unfortunately in practice, the optimal choice is generally unknown and must be estimated. Thus, we investigate stability of each of the three Lasso programs with respect to its governing parameter. Our goal is to aid the practitioner in answering the following question: given real data, which Lasso program should be used? We take a step towards answering this by analysing the case where the measurement matrix is identity (the so-called proximal denoising setup) and we use \n<tex>$\\ell _{1}$</tex>\n regularization. For each Lasso program, we specify settings in which that program is provably unstable with respect to its governing parameter. We support our analysis with detailed numerical simulations. For example, there are settings where a 0.1% underestimate of a Lasso parameter can increase the error significantly and a 50% underestimate can cause the error to increase by a factor of \n<tex>$10^{9}$</tex>\n.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa014","citationCount":"19","resultStr":"{\"title\":\"Sensitivity of ℓ1 minimization to parameter choice\",\"authors\":\"Aaron Berk;Yaniv Plan;Özgür Yilmaz\",\"doi\":\"10.1093/imaiai/iaaa014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of generalized Lasso is a common technique for recovery of structured high-dimensional signals. There are three common formulations of generalized Lasso; each program has a governing parameter whose optimal value depends on properties of the data. At this optimal value, compressed sensing theory explains why Lasso programs recover structured high-dimensional signals with minimax order-optimal error. Unfortunately in practice, the optimal choice is generally unknown and must be estimated. Thus, we investigate stability of each of the three Lasso programs with respect to its governing parameter. Our goal is to aid the practitioner in answering the following question: given real data, which Lasso program should be used? We take a step towards answering this by analysing the case where the measurement matrix is identity (the so-called proximal denoising setup) and we use \\n<tex>$\\\\ell _{1}$</tex>\\n regularization. For each Lasso program, we specify settings in which that program is provably unstable with respect to its governing parameter. We support our analysis with detailed numerical simulations. For example, there are settings where a 0.1% underestimate of a Lasso parameter can increase the error significantly and a 50% underestimate can cause the error to increase by a factor of \\n<tex>$10^{9}$</tex>\\n.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa014\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9514687/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514687/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensitivity of ℓ1 minimization to parameter choice
The use of generalized Lasso is a common technique for recovery of structured high-dimensional signals. There are three common formulations of generalized Lasso; each program has a governing parameter whose optimal value depends on properties of the data. At this optimal value, compressed sensing theory explains why Lasso programs recover structured high-dimensional signals with minimax order-optimal error. Unfortunately in practice, the optimal choice is generally unknown and must be estimated. Thus, we investigate stability of each of the three Lasso programs with respect to its governing parameter. Our goal is to aid the practitioner in answering the following question: given real data, which Lasso program should be used? We take a step towards answering this by analysing the case where the measurement matrix is identity (the so-called proximal denoising setup) and we use
$\ell _{1}$
regularization. For each Lasso program, we specify settings in which that program is provably unstable with respect to its governing parameter. We support our analysis with detailed numerical simulations. For example, there are settings where a 0.1% underestimate of a Lasso parameter can increase the error significantly and a 50% underestimate can cause the error to increase by a factor of
$10^{9}$
.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.