学习任务的信息复杂性、结构和距离

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto
{"title":"学习任务的信息复杂性、结构和距离","authors":"Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto","doi":"10.1093/imaiai/iaaa033","DOIUrl":null,"url":null,"abstract":"We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 1","pages":"51-72"},"PeriodicalIF":1.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa033","citationCount":"40","resultStr":"{\"title\":\"The information complexity of learning tasks, their structure and their distance\",\"authors\":\"Alessandro Achille;Giovanni Paolini;Glen Mbeng;Stefano Soatto\",\"doi\":\"10.1093/imaiai/iaaa033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"10 1\",\"pages\":\"51-72\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa033\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9432987/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9432987/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 40

摘要

我们引入了学习任务空间中的非对称距离,以及计算其复杂性的框架。这些概念是迁移学习实践的基础,通过迁移学习,参数模型被预先训练用于一项任务,然后被微调用于另一项任务。我们开发的框架是非渐进的,捕获了训练数据集的有限性质,并允许区分学习和记忆。作为特例,它包含了来自Kolmogorov复杂性和Shannon和Fisher信息的经典概念。然而,与其中一些框架不同,它可以应用于大规模模型和真实世界的数据集。我们的框架是第一个以考虑优化方案效果的方式来衡量复杂性的框架,这在深度学习中至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The information complexity of learning tasks, their structure and their distance
We introduce an asymmetric distance in the space of learning tasks and a framework to compute their complexity. These concepts are foundational for the practice of transfer learning, whereby a parametric model is pre-trained for a task, and then fine tuned for another. The framework we develop is non-asymptotic, captures the finite nature of the training dataset and allows distinguishing learning from memorization. It encompasses, as special cases, classical notions from Kolmogorov complexity and Shannon and Fisher information. However, unlike some of those frameworks, it can be applied to large-scale models and real-world datasets. Our framework is the first to measure complexity in a way that accounts for the effect of the optimization scheme, which is critical in deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信