数据驱动的分布式局部模型预测控制

Carmen Amo Alonso;Fengjun Yang;Nikolai Matni
{"title":"数据驱动的分布式局部模型预测控制","authors":"Carmen Amo Alonso;Fengjun Yang;Nikolai Matni","doi":"10.1109/OJCSYS.2022.3171787","DOIUrl":null,"url":null,"abstract":"Motivated by large-scale but computationally constrained settings, e.g., the Internet of Things, we present a novel data-driven distributed control algorithm that is synthesized directly from trajectory data. Our method, data-driven Distributed and Localized Model Predictive Control (D\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLMPC), builds upon the data-driven System Level Synthesis (SLS) framework, which allows one to parameterize \n<italic>closed-loop</i>\n system responses directly from collected open-loop trajectories. The resulting model-predictive controller can be implemented with distributed computation and only local information sharing. By imposing locality constraints on the system response, we show that the amount of data needed for our synthesis problem is independent of the size of the global system. Moreover, we show that our algorithm enjoys theoretical guarantees for recursive feasibility and asymptotic stability. Finally, we also demonstrate the optimality and scalability of our algorithm in a simulation experiment.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"29-40"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09772975.pdf","citationCount":"5","resultStr":"{\"title\":\"Data-Driven Distributed and Localized Model Predictive Control\",\"authors\":\"Carmen Amo Alonso;Fengjun Yang;Nikolai Matni\",\"doi\":\"10.1109/OJCSYS.2022.3171787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by large-scale but computationally constrained settings, e.g., the Internet of Things, we present a novel data-driven distributed control algorithm that is synthesized directly from trajectory data. Our method, data-driven Distributed and Localized Model Predictive Control (D\\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\\nLMPC), builds upon the data-driven System Level Synthesis (SLS) framework, which allows one to parameterize \\n<italic>closed-loop</i>\\n system responses directly from collected open-loop trajectories. The resulting model-predictive controller can be implemented with distributed computation and only local information sharing. By imposing locality constraints on the system response, we show that the amount of data needed for our synthesis problem is independent of the size of the global system. Moreover, we show that our algorithm enjoys theoretical guarantees for recursive feasibility and asymptotic stability. Finally, we also demonstrate the optimality and scalability of our algorithm in a simulation experiment.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"1 \",\"pages\":\"29-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552933/9683993/09772975.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9772975/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9772975/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

受大规模但计算受限的环境(例如物联网)的启发,我们提出了一种直接从轨迹数据合成的新型数据驱动分布式控制算法。我们的方法,数据驱动的分布式和局部模型预测控制(D$^{3}$LMPC),建立在数据驱动的系统级综合(SLS)框架之上,该框架允许直接从收集的开环轨迹中参数化闭环系统响应。所得到的模型预测控制器可以通过分布式计算和仅局部信息共享来实现。通过对系统响应施加局部约束,我们表明我们的综合问题所需的数据量与全局系统的大小无关。此外,我们还证明了我们的算法具有递归可行性和渐近稳定性的理论保证。最后,我们还通过仿真实验证明了算法的最优性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Distributed and Localized Model Predictive Control
Motivated by large-scale but computationally constrained settings, e.g., the Internet of Things, we present a novel data-driven distributed control algorithm that is synthesized directly from trajectory data. Our method, data-driven Distributed and Localized Model Predictive Control (D $^{3}$ LMPC), builds upon the data-driven System Level Synthesis (SLS) framework, which allows one to parameterize closed-loop system responses directly from collected open-loop trajectories. The resulting model-predictive controller can be implemented with distributed computation and only local information sharing. By imposing locality constraints on the system response, we show that the amount of data needed for our synthesis problem is independent of the size of the global system. Moreover, we show that our algorithm enjoys theoretical guarantees for recursive feasibility and asymptotic stability. Finally, we also demonstrate the optimality and scalability of our algorithm in a simulation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信