分位数回归的乘数自举:随机设计下的非渐近理论

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Xiaoou Pan;Wen-Xin Zhou
{"title":"分位数回归的乘数自举:随机设计下的非渐近理论","authors":"Xiaoou Pan;Wen-Xin Zhou","doi":"10.1093/imaiai/iaaa006","DOIUrl":null,"url":null,"abstract":"This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-asymptotic analysis keeps track of the impact of the parameter dimension \n<tex>$d$</tex>\n and sample size \n<tex>$n$</tex>\n in the rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of Rademacher bootstrap in terms of accuracy, reliability and computational efficiency.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 3","pages":"813-861"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaaa006","citationCount":"9","resultStr":"{\"title\":\"Multiplier bootstrap for quantile regression: non-asymptotic theory under random design\",\"authors\":\"Xiaoou Pan;Wen-Xin Zhou\",\"doi\":\"10.1093/imaiai/iaaa006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-asymptotic analysis keeps track of the impact of the parameter dimension \\n<tex>$d$</tex>\\n and sample size \\n<tex>$n$</tex>\\n in the rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of Rademacher bootstrap in terms of accuracy, reliability and computational efficiency.\",\"PeriodicalId\":45437,\"journal\":{\"name\":\"Information and Inference-A Journal of the Ima\",\"volume\":\"10 3\",\"pages\":\"813-861\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imaiai/iaaa006\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Inference-A Journal of the Ima\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9579221/\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9579221/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

摘要

本文建立了随机设计环境中分位数回归估计量及其乘数自举对应项的非渐近集中界和Bahadur表示。非渐近分析跟踪参数维度$d$和样本大小$n$对收敛速度以及正态和自举近似误差的影响。这些结果是对固定设计下渐近结果的有益补充,并为Rademacher乘法器自举在置信度构建和拟合优度测试问题中的有效性提供了理论保证。数值研究有力地支持了我们的理论,并强调了Rademacher bootstrap在准确性、可靠性和计算效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplier bootstrap for quantile regression: non-asymptotic theory under random design
This paper establishes non-asymptotic concentration bound and Bahadur representation for the quantile regression estimator and its multiplier bootstrap counterpart in the random design setting. The non-asymptotic analysis keeps track of the impact of the parameter dimension $d$ and sample size $n$ in the rate of convergence, as well as in normal and bootstrap approximation errors. These results represent a useful complement to the asymptotic results under fixed design and provide theoretical guarantees for the validity of Rademacher multiplier bootstrap in the problems of confidence construction and goodness-of-fit testing. Numerical studies lend strong support to our theory and highlight the effectiveness of Rademacher bootstrap in terms of accuracy, reliability and computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信