一个双群拟体的拓扑(或对空间的同伦双群拟体进行拓扑化)

IF 0.5 4区 数学
David Michael Roberts
{"title":"一个双群拟体的拓扑(或对空间的同伦双群拟体进行拓扑化)","authors":"David Michael Roberts","doi":"10.1007/s40062-016-0160-0","DOIUrl":null,"url":null,"abstract":"<p>The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topological groupoid. For locally relatively contractible spaces the resulting topological bigroupoid is <i>locally trivial</i> in a way analogous to the case of the topologised fundamental groupoid. This is the published version of arXiv:1302.7019.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"11 4","pages":"923 - 942"},"PeriodicalIF":0.5000,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-016-0160-0","citationCount":"1","resultStr":"{\"title\":\"A bigroupoid’s topology (or, Topologising the homotopy bigroupoid of a space)\",\"authors\":\"David Michael Roberts\",\"doi\":\"10.1007/s40062-016-0160-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topological groupoid. For locally relatively contractible spaces the resulting topological bigroupoid is <i>locally trivial</i> in a way analogous to the case of the topologised fundamental groupoid. This is the published version of arXiv:1302.7019.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"11 4\",\"pages\":\"923 - 942\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-016-0160-0\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-016-0160-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-016-0160-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

拓扑空间的基本双群拟面是捕获其同伦2型的一种方法。当空间是半局部2连通时,可以将构造提升到拓扑空间范畴内的大群似面,正如Brown和Danesh-Naruie将基本群似面提升到拓扑群似面。对于局部相对可缩空间,得到的拓扑双群似是局部平凡的,类似于拓扑基群似的情况。这是arXiv:1302.7019的发布版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A bigroupoid’s topology (or, Topologising the homotopy bigroupoid of a space)

A bigroupoid’s topology (or, Topologising the homotopy bigroupoid of a space)

The fundamental bigroupoid of a topological space is one way of capturing its homotopy 2-type. When the space is semilocally 2-connected, one can lift the construction to a bigroupoid internal to the category of topological spaces, as Brown and Danesh-Naruie lifted the fundamental groupoid to a topological groupoid. For locally relatively contractible spaces the resulting topological bigroupoid is locally trivial in a way analogous to the case of the topologised fundamental groupoid. This is the published version of arXiv:1302.7019.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信