Galang P. N. Hakim;Mohamed Hadi Habaebi;MD. Rafiqul Islam;Abdullah Alghaihab;Siti Hajar Binti Yusoff;Erry Yulian T. Adesta
{"title":"用于密集丛林应用的自组织无线传感器网络","authors":"Galang P. N. Hakim;Mohamed Hadi Habaebi;MD. Rafiqul Islam;Abdullah Alghaihab;Siti Hajar Binti Yusoff;Erry Yulian T. Adesta","doi":"10.1109/ACCESS.2023.3323035","DOIUrl":null,"url":null,"abstract":"To facilitate wireless sensor networks deployment in dense jungle environments, the challenges of unreliable wireless communication links used for routing data between nodes and the gateway, and the limited battery energy available from the nodes must be overcome. In this paper, we introduce the Self-Organized Wireless Sensor Network (SOWSN) to overcome these challenges. To develop the traits needed for such SOWSN nodes, three types of computational intelligence mechanisms have been featured in the design. The first feature is the introduction of Multi Criteria Decision Making (MCDM) algorithm with simple Additive Weight (SAW) function for clustering the SOWSN nodes. The second feature is the introduction of the fuzzy logic ANFIS-optimized Near Ground Propagation Model to predict the wireless transmission link quality and power transfer between transmitters. The third feature is the introduction of the (Levenberg Marquardt artificial neural network (LM-ANN) for Adaptive and Dynamic Power Control to further optimize the transmitter power levels, radio modulation, Spreading Factor configurations, and settings of the employed SOWSN LoRaWAN nodes based on predicted wireless transmission link quality parameters. The introduced features were extensively evaluated and analyzed using simulation and empirical measurements. Using clustering, near-ground propagation, and adaptive transmission power control features, a robust wireless data transmission system was built while simultaneously providing power conservation in SOWSN operation. The payload loss can be improved using SAW clustering from 1275-bytes to 5100-bytes. The result of power conservation can be seen from the reduction of transmission power in SOWSN nodes with the increase of transmission time (TOA) as its side effect. With the original power transmission at 20-dBm, original TOA time at 96.832-milliseconds for all nodes, and SNR 3 as input, transmission power was reduced to 12.76-dBm and the TOA increased to 346.78-milliseconds for all nodes.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"112940-112952"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6287639/10005208/10281366.pdf","citationCount":"0","resultStr":"{\"title\":\"Self-Organized Wireless Sensor Network (SOWSN) for Dense Jungle Applications\",\"authors\":\"Galang P. N. Hakim;Mohamed Hadi Habaebi;MD. Rafiqul Islam;Abdullah Alghaihab;Siti Hajar Binti Yusoff;Erry Yulian T. Adesta\",\"doi\":\"10.1109/ACCESS.2023.3323035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To facilitate wireless sensor networks deployment in dense jungle environments, the challenges of unreliable wireless communication links used for routing data between nodes and the gateway, and the limited battery energy available from the nodes must be overcome. In this paper, we introduce the Self-Organized Wireless Sensor Network (SOWSN) to overcome these challenges. To develop the traits needed for such SOWSN nodes, three types of computational intelligence mechanisms have been featured in the design. The first feature is the introduction of Multi Criteria Decision Making (MCDM) algorithm with simple Additive Weight (SAW) function for clustering the SOWSN nodes. The second feature is the introduction of the fuzzy logic ANFIS-optimized Near Ground Propagation Model to predict the wireless transmission link quality and power transfer between transmitters. The third feature is the introduction of the (Levenberg Marquardt artificial neural network (LM-ANN) for Adaptive and Dynamic Power Control to further optimize the transmitter power levels, radio modulation, Spreading Factor configurations, and settings of the employed SOWSN LoRaWAN nodes based on predicted wireless transmission link quality parameters. The introduced features were extensively evaluated and analyzed using simulation and empirical measurements. Using clustering, near-ground propagation, and adaptive transmission power control features, a robust wireless data transmission system was built while simultaneously providing power conservation in SOWSN operation. The payload loss can be improved using SAW clustering from 1275-bytes to 5100-bytes. The result of power conservation can be seen from the reduction of transmission power in SOWSN nodes with the increase of transmission time (TOA) as its side effect. With the original power transmission at 20-dBm, original TOA time at 96.832-milliseconds for all nodes, and SNR 3 as input, transmission power was reduced to 12.76-dBm and the TOA increased to 346.78-milliseconds for all nodes.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"11 \",\"pages\":\"112940-112952\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6287639/10005208/10281366.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10281366/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10281366/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Self-Organized Wireless Sensor Network (SOWSN) for Dense Jungle Applications
To facilitate wireless sensor networks deployment in dense jungle environments, the challenges of unreliable wireless communication links used for routing data between nodes and the gateway, and the limited battery energy available from the nodes must be overcome. In this paper, we introduce the Self-Organized Wireless Sensor Network (SOWSN) to overcome these challenges. To develop the traits needed for such SOWSN nodes, three types of computational intelligence mechanisms have been featured in the design. The first feature is the introduction of Multi Criteria Decision Making (MCDM) algorithm with simple Additive Weight (SAW) function for clustering the SOWSN nodes. The second feature is the introduction of the fuzzy logic ANFIS-optimized Near Ground Propagation Model to predict the wireless transmission link quality and power transfer between transmitters. The third feature is the introduction of the (Levenberg Marquardt artificial neural network (LM-ANN) for Adaptive and Dynamic Power Control to further optimize the transmitter power levels, radio modulation, Spreading Factor configurations, and settings of the employed SOWSN LoRaWAN nodes based on predicted wireless transmission link quality parameters. The introduced features were extensively evaluated and analyzed using simulation and empirical measurements. Using clustering, near-ground propagation, and adaptive transmission power control features, a robust wireless data transmission system was built while simultaneously providing power conservation in SOWSN operation. The payload loss can be improved using SAW clustering from 1275-bytes to 5100-bytes. The result of power conservation can be seen from the reduction of transmission power in SOWSN nodes with the increase of transmission time (TOA) as its side effect. With the original power transmission at 20-dBm, original TOA time at 96.832-milliseconds for all nodes, and SNR 3 as input, transmission power was reduced to 12.76-dBm and the TOA increased to 346.78-milliseconds for all nodes.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.