Hendrickson关于全局刚性图猜想的极小反例

Georg Grasegger
{"title":"Hendrickson关于全局刚性图猜想的极小反例","authors":"Georg Grasegger","doi":"10.1016/j.exco.2023.100106","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the class of graphs which are redundantly <span><math><mi>d</mi></math></span>-rigid and <span><math><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-connected but not globally <span><math><mi>d</mi></math></span>-rigid, where <span><math><mi>d</mi></math></span> is the dimension. This class arises from counterexamples to a conjecture by Bruce Hendrickson. It seems that there are relatively few graphs in this class for a given number of vertices. Using computations we show that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow></msub></math></span> is indeed the smallest counterexample to the conjecture.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal counterexamples to Hendrickson’s conjecture on globally rigid graphs\",\"authors\":\"Georg Grasegger\",\"doi\":\"10.1016/j.exco.2023.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider the class of graphs which are redundantly <span><math><mi>d</mi></math></span>-rigid and <span><math><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-connected but not globally <span><math><mi>d</mi></math></span>-rigid, where <span><math><mi>d</mi></math></span> is the dimension. This class arises from counterexamples to a conjecture by Bruce Hendrickson. It seems that there are relatively few graphs in this class for a given number of vertices. Using computations we show that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow></msub></math></span> is indeed the smallest counterexample to the conjecture.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类图,它是冗余d刚性的和(d+1)-连通的,但不是全局d刚性的,其中d是维数。这类由Bruce Hendrickson的一个猜想的反例产生。对于给定数量的顶点,这一类中的图似乎相对较少。通过计算,我们证明K5,5确实是该猜想的最小反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal counterexamples to Hendrickson’s conjecture on globally rigid graphs

In this paper we consider the class of graphs which are redundantly d-rigid and (d+1)-connected but not globally d-rigid, where d is the dimension. This class arises from counterexamples to a conjecture by Bruce Hendrickson. It seems that there are relatively few graphs in this class for a given number of vertices. Using computations we show that K5,5 is indeed the smallest counterexample to the conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信