耦合Drinfel'd-Sokolov-Wilson方程的通解及其应用

Shreya Mitra , A. Ghose-Choudhury , Sudip Garai
{"title":"耦合Drinfel'd-Sokolov-Wilson方程的通解及其应用","authors":"Shreya Mitra ,&nbsp;A. Ghose-Choudhury ,&nbsp;Sudip Garai","doi":"10.1016/j.exco.2023.100108","DOIUrl":null,"url":null,"abstract":"<div><p>We report a new batch of wave solutions for the coupled Drinfel’d–Sokolov–Wilson equation which represents a coupled system of nonlinear partial differential equations (NLPDEs). Firstly by making a travelling wave ansatz, we decouple the system and obtain a second-order ordinary differential equation (ODE). Thereafter we perform phase space and bifurcation analysis of that second-order ODE and proceed to construct the general solution for the envelope of the wave packet. The solutions are expressed in terms of the Jacobi elliptic sine function from which one can obtain solitary wave (particular) solutions by imposing appropriate conditions on the roots of certain quartic polynomials as discussed thereafter.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100108"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"General solutions and applications of the coupled Drinfel’d–Sokolov–Wilson equation\",\"authors\":\"Shreya Mitra ,&nbsp;A. Ghose-Choudhury ,&nbsp;Sudip Garai\",\"doi\":\"10.1016/j.exco.2023.100108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a new batch of wave solutions for the coupled Drinfel’d–Sokolov–Wilson equation which represents a coupled system of nonlinear partial differential equations (NLPDEs). Firstly by making a travelling wave ansatz, we decouple the system and obtain a second-order ordinary differential equation (ODE). Thereafter we perform phase space and bifurcation analysis of that second-order ODE and proceed to construct the general solution for the envelope of the wave packet. The solutions are expressed in terms of the Jacobi elliptic sine function from which one can obtain solitary wave (particular) solutions by imposing appropriate conditions on the roots of certain quartic polynomials as discussed thereafter.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们报道了一组新的耦合Drinfel’d–Sokolov–Wilson方程的波解,该方程代表了一个非线性偏微分方程(NLPDE)的耦合系统。首先,通过对行波进行模拟,使系统解耦,得到一个二阶常微分方程。然后,我们对二阶常微分方程进行了相空间和分支分析,并构造了波包包络的一般解。这些解是用雅可比椭圆正弦函数表示的,通过对某些四次多项式的根施加适当的条件,可以从中获得孤立波(特定)解,如下所述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General solutions and applications of the coupled Drinfel’d–Sokolov–Wilson equation

We report a new batch of wave solutions for the coupled Drinfel’d–Sokolov–Wilson equation which represents a coupled system of nonlinear partial differential equations (NLPDEs). Firstly by making a travelling wave ansatz, we decouple the system and obtain a second-order ordinary differential equation (ODE). Thereafter we perform phase space and bifurcation analysis of that second-order ODE and proceed to construct the general solution for the envelope of the wave packet. The solutions are expressed in terms of the Jacobi elliptic sine function from which one can obtain solitary wave (particular) solutions by imposing appropriate conditions on the roots of certain quartic polynomials as discussed thereafter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信