关于群代数的Wedderburn分解的一个注记

Gaurav Mittal , R.K. Sharma
{"title":"关于群代数的Wedderburn分解的一个注记","authors":"Gaurav Mittal ,&nbsp;R.K. Sharma","doi":"10.1016/j.exco.2023.100105","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend the result of Mittal and Sharma (Bull. Korean Math. Soc. 2022) on Wedderburn decomposition (WD) of a finite semisimple group algebra. It is known that, under certain conditions, WD of a finite semisimple group algebra <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>G</mi></mrow></math></span> can be computed from WD of its subalgebra <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>H</mi></math></span> is a normal subgroup of <span><math><mi>G</mi></math></span> of prime order and <span><math><mrow><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> for some prime <span><math><mi>p</mi></math></span> and positive integer <span><math><mi>k</mi></math></span>. We extend this result to any normal subgroup <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on Wedderburn decomposition of a group algebra\",\"authors\":\"Gaurav Mittal ,&nbsp;R.K. Sharma\",\"doi\":\"10.1016/j.exco.2023.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we extend the result of Mittal and Sharma (Bull. Korean Math. Soc. 2022) on Wedderburn decomposition (WD) of a finite semisimple group algebra. It is known that, under certain conditions, WD of a finite semisimple group algebra <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>G</mi></mrow></math></span> can be computed from WD of its subalgebra <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>H</mi></math></span> is a normal subgroup of <span><math><mi>G</mi></math></span> of prime order and <span><math><mrow><mi>q</mi><mo>=</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span> for some prime <span><math><mi>p</mi></math></span> and positive integer <span><math><mi>k</mi></math></span>. We extend this result to any normal subgroup <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span> of order <span><math><mi>n</mi></math></span>.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"3 \",\"pages\":\"Article 100105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X23000071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文推广了Mittal和Sharma(Bull.Korean Math.Soc.2022)关于有限半单群代数的Wedderburn分解(WD)的结果。已知在一定条件下,有限半单群代数FqG的WD可以由其子代数Fq(G/H)的WD计算,其中H是素数阶G的正规子群,对于某个素数p和正整数k,q=pk。我们将这一结果推广到n阶G的任何正规子群H。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short note on Wedderburn decomposition of a group algebra

In this paper, we extend the result of Mittal and Sharma (Bull. Korean Math. Soc. 2022) on Wedderburn decomposition (WD) of a finite semisimple group algebra. It is known that, under certain conditions, WD of a finite semisimple group algebra FqG can be computed from WD of its subalgebra Fq(G/H), where H is a normal subgroup of G of prime order and q=pk for some prime p and positive integer k. We extend this result to any normal subgroup H of G of order n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信