{"title":"关于Huber污染模型","authors":"Weiyan Mu , Shifeng Xiong","doi":"10.1016/j.jco.2023.101745","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Huber's contaminated model is a basic model for data with outliers. This paper aims at addressing several fundamental problems about this model. We first study its identifiability properties. Several theorems are presented to determine whether the model is identifiable for various situations. Based on these results, we discuss the problem of estimating the parameters with observations drawn from Huber's contaminated model. A definition of estimation consistency is introduced to handle the general case where the model may be unidentifiable. This consistency is a strong </span>robustness property. After showing that existing estimators cannot be consistent in this sense, we propose a new estimator that possesses the consistency property under mild conditions. Its adaptive version, which can simultaneously possess this consistency property and optimal </span>asymptotic efficiency, is also provided. Numerical examples show that our estimators have better overall performance than existing estimators no matter how many outliers in the data.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"77 ","pages":"Article 101745"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Huber's contaminated model\",\"authors\":\"Weiyan Mu , Shifeng Xiong\",\"doi\":\"10.1016/j.jco.2023.101745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Huber's contaminated model is a basic model for data with outliers. This paper aims at addressing several fundamental problems about this model. We first study its identifiability properties. Several theorems are presented to determine whether the model is identifiable for various situations. Based on these results, we discuss the problem of estimating the parameters with observations drawn from Huber's contaminated model. A definition of estimation consistency is introduced to handle the general case where the model may be unidentifiable. This consistency is a strong </span>robustness property. After showing that existing estimators cannot be consistent in this sense, we propose a new estimator that possesses the consistency property under mild conditions. Its adaptive version, which can simultaneously possess this consistency property and optimal </span>asymptotic efficiency, is also provided. Numerical examples show that our estimators have better overall performance than existing estimators no matter how many outliers in the data.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"77 \",\"pages\":\"Article 101745\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000146\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000146","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Huber's contaminated model is a basic model for data with outliers. This paper aims at addressing several fundamental problems about this model. We first study its identifiability properties. Several theorems are presented to determine whether the model is identifiable for various situations. Based on these results, we discuss the problem of estimating the parameters with observations drawn from Huber's contaminated model. A definition of estimation consistency is introduced to handle the general case where the model may be unidentifiable. This consistency is a strong robustness property. After showing that existing estimators cannot be consistent in this sense, we propose a new estimator that possesses the consistency property under mild conditions. Its adaptive version, which can simultaneously possess this consistency property and optimal asymptotic efficiency, is also provided. Numerical examples show that our estimators have better overall performance than existing estimators no matter how many outliers in the data.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.