Philipp Grohs , Shokhrukh Ibragimov , Arnulf Jentzen , Sarah Koppensteiner
{"title":"人工神经网络近似的下界:浅层神经网络无法克服维数诅咒的证明","authors":"Philipp Grohs , Shokhrukh Ibragimov , Arnulf Jentzen , Sarah Koppensteiner","doi":"10.1016/j.jco.2023.101746","DOIUrl":null,"url":null,"abstract":"<div><p><span>Artificial neural networks<span> (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical relevant computational problems involving high-dimensional input data ranging from classification tasks in supervised learning to optimal decision problems in reinforcement learning. There are also a number of mathematical results in the scientific literature which study the approximation capacities of ANNs in the context of high-dimensional target functions. In particular, there are a series of mathematical results in the scientific literature which show that sufficiently deep ANNs have the capacity to overcome the curse of dimensionality in the approximation of certain target function classes in the sense that the number of parameters of the approximating ANNs grows at most polynomially in the dimension </span></span><span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> of the target functions under considerations. In the proofs of several of such high-dimensional approximation results it is crucial that the involved ANNs are sufficiently deep and consist a sufficiently large number of hidden layers which grows in the dimension of the considered target functions. It is the topic of this work to look a bit more detailed to the deepness of the involved ANNs in the approximation of high-dimensional target functions. In particular, the main result of this work proves that there exists a concretely specified sequence of functions which can be approximated without the curse of dimensionality by sufficiently deep ANNs but which cannot be approximated without the curse of dimensionality if the involved ANNs are shallow or not deep enough.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"77 ","pages":"Article 101746"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lower bounds for artificial neural network approximations: A proof that shallow neural networks fail to overcome the curse of dimensionality\",\"authors\":\"Philipp Grohs , Shokhrukh Ibragimov , Arnulf Jentzen , Sarah Koppensteiner\",\"doi\":\"10.1016/j.jco.2023.101746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Artificial neural networks<span> (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical relevant computational problems involving high-dimensional input data ranging from classification tasks in supervised learning to optimal decision problems in reinforcement learning. There are also a number of mathematical results in the scientific literature which study the approximation capacities of ANNs in the context of high-dimensional target functions. In particular, there are a series of mathematical results in the scientific literature which show that sufficiently deep ANNs have the capacity to overcome the curse of dimensionality in the approximation of certain target function classes in the sense that the number of parameters of the approximating ANNs grows at most polynomially in the dimension </span></span><span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> of the target functions under considerations. In the proofs of several of such high-dimensional approximation results it is crucial that the involved ANNs are sufficiently deep and consist a sufficiently large number of hidden layers which grows in the dimension of the considered target functions. It is the topic of this work to look a bit more detailed to the deepness of the involved ANNs in the approximation of high-dimensional target functions. In particular, the main result of this work proves that there exists a concretely specified sequence of functions which can be approximated without the curse of dimensionality by sufficiently deep ANNs but which cannot be approximated without the curse of dimensionality if the involved ANNs are shallow or not deep enough.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"77 \",\"pages\":\"Article 101746\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000158\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lower bounds for artificial neural network approximations: A proof that shallow neural networks fail to overcome the curse of dimensionality
Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical relevant computational problems involving high-dimensional input data ranging from classification tasks in supervised learning to optimal decision problems in reinforcement learning. There are also a number of mathematical results in the scientific literature which study the approximation capacities of ANNs in the context of high-dimensional target functions. In particular, there are a series of mathematical results in the scientific literature which show that sufficiently deep ANNs have the capacity to overcome the curse of dimensionality in the approximation of certain target function classes in the sense that the number of parameters of the approximating ANNs grows at most polynomially in the dimension of the target functions under considerations. In the proofs of several of such high-dimensional approximation results it is crucial that the involved ANNs are sufficiently deep and consist a sufficiently large number of hidden layers which grows in the dimension of the considered target functions. It is the topic of this work to look a bit more detailed to the deepness of the involved ANNs in the approximation of high-dimensional target functions. In particular, the main result of this work proves that there exists a concretely specified sequence of functions which can be approximated without the curse of dimensionality by sufficiently deep ANNs but which cannot be approximated without the curse of dimensionality if the involved ANNs are shallow or not deep enough.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.