Zhenwei Niu , Shuqiong Zeng , Mei Tang , Zaixiu Yang
{"title":"无序二元hcp-Fe合金在高压下的弹性性能:轻元素的影响","authors":"Zhenwei Niu , Shuqiong Zeng , Mei Tang , Zaixiu Yang","doi":"10.1016/j.chphma.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-random structure method. We found that the increase in the O content in hcp-Fe had a more pronounced effect on the sound velocity than Si, S, and C. The longitudinal wave velocity was decreased by ∼ 6% with 2% O content, which was a much greater decrease than the values of 0.6% and 2% induced by the same content of Si and S, respectively, under high pressures. Compared with the other three light elements, the longitudinal wave velocity of the Fe-C alloy exhibited the most gradual decreasing with increasing C content. In addition, the effects of different O and S contents on the anisotropy of hcp-Fe alloys strongly depended on the variation in pressure, whereas the pressure only slightly affected the anisotropy of Fe-Si alloy systems.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"2 2","pages":"Pages 155-163"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic properties of disordered binary hcp-Fe alloys under high pressure: Effects of light elements\",\"authors\":\"Zhenwei Niu , Shuqiong Zeng , Mei Tang , Zaixiu Yang\",\"doi\":\"10.1016/j.chphma.2022.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-random structure method. We found that the increase in the O content in hcp-Fe had a more pronounced effect on the sound velocity than Si, S, and C. The longitudinal wave velocity was decreased by ∼ 6% with 2% O content, which was a much greater decrease than the values of 0.6% and 2% induced by the same content of Si and S, respectively, under high pressures. Compared with the other three light elements, the longitudinal wave velocity of the Fe-C alloy exhibited the most gradual decreasing with increasing C content. In addition, the effects of different O and S contents on the anisotropy of hcp-Fe alloys strongly depended on the variation in pressure, whereas the pressure only slightly affected the anisotropy of Fe-Si alloy systems.</p></div>\",\"PeriodicalId\":100236,\"journal\":{\"name\":\"ChemPhysMater\",\"volume\":\"2 2\",\"pages\":\"Pages 155-163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhysMater\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772571522000559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571522000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elastic properties of disordered binary hcp-Fe alloys under high pressure: Effects of light elements
The effects of light elements on the elastic properties of disordered binary hcp-Fe alloys were investigated at high pressures using plane-wave density functional theory combined with the Monte Carlo special quasi-random structure method. We found that the increase in the O content in hcp-Fe had a more pronounced effect on the sound velocity than Si, S, and C. The longitudinal wave velocity was decreased by ∼ 6% with 2% O content, which was a much greater decrease than the values of 0.6% and 2% induced by the same content of Si and S, respectively, under high pressures. Compared with the other three light elements, the longitudinal wave velocity of the Fe-C alloy exhibited the most gradual decreasing with increasing C content. In addition, the effects of different O and S contents on the anisotropy of hcp-Fe alloys strongly depended on the variation in pressure, whereas the pressure only slightly affected the anisotropy of Fe-Si alloy systems.