风险溢出中的网络:多元GARCH视角

IF 2 Q2 ECONOMICS
Monica Billio , Massimiliano Caporin , Lorenzo Frattarolo , Loriana Pelizzon
{"title":"风险溢出中的网络:多元GARCH视角","authors":"Monica Billio ,&nbsp;Massimiliano Caporin ,&nbsp;Lorenzo Frattarolo ,&nbsp;Loriana Pelizzon","doi":"10.1016/j.ecosta.2020.12.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A spatiotemporal approach is proposed for modeling risk spillovers using time-varying proximity matrices based on observable financial networks and a new bilateral Multivariate </span>GARCH specification is introduced. The covariance </span>stationarity<span><span> and identification of the model is studied, developing the quasi-maximum-likelihood estimator and analysing its consistency and asymptotic normality. Further, it is shown how to isolate risk channels and it is discussed how to compute target exposure in order to reduce the system variance. An empirical analysis on Euro-area sovereign </span>credit default swap data indicates that Italy and Ireland are key players in spreading risk, France and Portugal are major risk receivers, and Spain’s non-trivial role as a risk middleman is uncovered.</span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"28 ","pages":"Pages 1-29"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecosta.2020.12.003","citationCount":"0","resultStr":"{\"title\":\"Networks in risk spillovers: A multivariate GARCH perspective\",\"authors\":\"Monica Billio ,&nbsp;Massimiliano Caporin ,&nbsp;Lorenzo Frattarolo ,&nbsp;Loriana Pelizzon\",\"doi\":\"10.1016/j.ecosta.2020.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A spatiotemporal approach is proposed for modeling risk spillovers using time-varying proximity matrices based on observable financial networks and a new bilateral Multivariate </span>GARCH specification is introduced. The covariance </span>stationarity<span><span> and identification of the model is studied, developing the quasi-maximum-likelihood estimator and analysing its consistency and asymptotic normality. Further, it is shown how to isolate risk channels and it is discussed how to compute target exposure in order to reduce the system variance. An empirical analysis on Euro-area sovereign </span>credit default swap data indicates that Italy and Ireland are key players in spreading risk, France and Portugal are major risk receivers, and Spain’s non-trivial role as a risk middleman is uncovered.</span></p></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"28 \",\"pages\":\"Pages 1-29\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ecosta.2020.12.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452306221000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

基于可观察金融网络,提出了一种利用时变邻近矩阵建模风险溢出的时空方法,并引入了一种新的双边多变量GARCH规范。研究了模型的协方差平稳性和辨识性,建立了拟极大似然估计量,分析了其一致性和渐近正态性。此外,还展示了如何隔离风险渠道,并讨论了如何计算目标暴露以减少系统方差。对欧元区主权信用违约掉期数据的实证分析表明,意大利和爱尔兰是分散风险的关键参与者,法国和葡萄牙是主要的风险接受者,西班牙作为风险中间人的重要作用被揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Networks in risk spillovers: A multivariate GARCH perspective

A spatiotemporal approach is proposed for modeling risk spillovers using time-varying proximity matrices based on observable financial networks and a new bilateral Multivariate GARCH specification is introduced. The covariance stationarity and identification of the model is studied, developing the quasi-maximum-likelihood estimator and analysing its consistency and asymptotic normality. Further, it is shown how to isolate risk channels and it is discussed how to compute target exposure in order to reduce the system variance. An empirical analysis on Euro-area sovereign credit default swap data indicates that Italy and Ireland are key players in spreading risk, France and Portugal are major risk receivers, and Spain’s non-trivial role as a risk middleman is uncovered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信