基于神经网络的智能个性化内容推荐

HeQiang Zhou
{"title":"基于神经网络的智能个性化内容推荐","authors":"HeQiang Zhou","doi":"10.1016/j.ijin.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>To effectively assist users in discovering content tailored to their specific interests, this research aims to create an intelligent content recommendation system. The inadequacy of conventional recommendation models, which depend uniquely on historical reading data, becomes evident in their limited capacity to meet contemporary users' diverse and ever-changing preferences within the information. The proposed architecture makes the most of the advancements in deep learning technology. It integrates the self-attention mechanism, allowing for precise calibration of the significance attributed to each feature within the news data. The proposed multilevel data classification network enables a more refined and personalized knowledge of users' preferences and the array of content information attributes while incorporating the users' unique characteristics. The proposed model achieved an accuracy rate of 85.2%, a recall rate of 83.7%, an F1 score of 84.3%, and an Area Under the Curve (AUC) of 84.5%. By developing a multilevel, intelligent, personalized content recommendation network, the research attempts to introduce a solution that effectively provides users' preferences, thereby enriching their experience in discovering relevant information within the modern digital system.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"4 ","pages":"Pages 231-239"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent personalized content recommendations based on neural networks\",\"authors\":\"HeQiang Zhou\",\"doi\":\"10.1016/j.ijin.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To effectively assist users in discovering content tailored to their specific interests, this research aims to create an intelligent content recommendation system. The inadequacy of conventional recommendation models, which depend uniquely on historical reading data, becomes evident in their limited capacity to meet contemporary users' diverse and ever-changing preferences within the information. The proposed architecture makes the most of the advancements in deep learning technology. It integrates the self-attention mechanism, allowing for precise calibration of the significance attributed to each feature within the news data. The proposed multilevel data classification network enables a more refined and personalized knowledge of users' preferences and the array of content information attributes while incorporating the users' unique characteristics. The proposed model achieved an accuracy rate of 85.2%, a recall rate of 83.7%, an F1 score of 84.3%, and an Area Under the Curve (AUC) of 84.5%. By developing a multilevel, intelligent, personalized content recommendation network, the research attempts to introduce a solution that effectively provides users' preferences, thereby enriching their experience in discovering relevant information within the modern digital system.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"4 \",\"pages\":\"Pages 231-239\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266660302300026X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266660302300026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地帮助用户发现适合其特定兴趣的内容,本研究旨在创建一个智能内容推荐系统。传统的推荐模型独特地依赖于历史阅读数据,其不足之处在于其满足当代用户在信息中多样化和不断变化的偏好的能力有限。所提出的架构充分利用了深度学习技术的进步。它集成了自关注机制,可以精确校准新闻数据中每个特征的重要性。所提出的多级数据分类网络能够更精细和个性化地了解用户的偏好和内容信息属性,同时结合用户的独特特征。该模型的准确率为85.2%,召回率为83.7%,F1得分为84.3%,曲线下面积(AUC)为84.5%。通过开发一个多层次、智能、个性化的内容推荐网络,该研究试图引入一种有效提供用户偏好的解决方案,从而丰富了他们在现代数字系统中发现相关信息的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent personalized content recommendations based on neural networks

To effectively assist users in discovering content tailored to their specific interests, this research aims to create an intelligent content recommendation system. The inadequacy of conventional recommendation models, which depend uniquely on historical reading data, becomes evident in their limited capacity to meet contemporary users' diverse and ever-changing preferences within the information. The proposed architecture makes the most of the advancements in deep learning technology. It integrates the self-attention mechanism, allowing for precise calibration of the significance attributed to each feature within the news data. The proposed multilevel data classification network enables a more refined and personalized knowledge of users' preferences and the array of content information attributes while incorporating the users' unique characteristics. The proposed model achieved an accuracy rate of 85.2%, a recall rate of 83.7%, an F1 score of 84.3%, and an Area Under the Curve (AUC) of 84.5%. By developing a multilevel, intelligent, personalized content recommendation network, the research attempts to introduce a solution that effectively provides users' preferences, thereby enriching their experience in discovering relevant information within the modern digital system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信